rows { options { physical_type: PHYSICAL_STREAM_TYPE_QUADS max_name_table_size: 128 max_prefix_table_size: 16 max_datatype_table_size: 16 logical_type: LOGICAL_STREAM_TYPE_DATASETS version: 2 } } rows { prefix { value: "https://w3id.org/np/" } } rows { name { value: "RA1I4NGHVC2hLnf2RYxP9GgtNXXhAhILSw-_BjUkNke9M" } } rows { namespace { name: "this" value { prefix_id: 1 } } } rows { prefix { value: "https://w3id.org/np/RA1I4NGHVC2hLnf2RYxP9GgtNXXhAhILSw-_BjUkNke9M/" } } rows { name { } } rows { namespace { name: "sub" value { prefix_id: 2 } } } rows { prefix { value: "http://www.nanopub.org/nschema#" } } rows { namespace { name: "np" value { prefix_id: 3 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { namespace { name: "dct" value { prefix_id: 4 name_id: 2 } } } rows { prefix { value: "http://purl.org/pav/" } } rows { namespace { name: "pav" value { prefix_id: 5 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/1999/02/22-rdf-syntax-ns#" } } rows { namespace { name: "rdf" value { prefix_id: 6 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2002/07/owl#" } } rows { namespace { name: "owl" value { prefix_id: 7 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2004/03/trix/rdfg-1/" } } rows { namespace { name: "rdfg" value { prefix_id: 8 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/elements/1.1/" } } rows { namespace { name: "dce" value { prefix_id: 9 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2001/XMLSchema#" } } rows { namespace { name: "xsd" value { prefix_id: 10 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { namespace { name: "rdfs" value { prefix_id: 11 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/ns/prov#" } } rows { namespace { name: "prov" value { prefix_id: 12 name_id: 2 } } } rows { prefix { value: "http://purl.org/nanopub/x/" } } rows { namespace { name: "npx" value { prefix_id: 13 name_id: 2 } } } rows { name { value: "hasAssertion" } } rows { name { value: "assertion" } } rows { name { value: "Head" } } rows { quad { s_iri { prefix_id: 1 name_id: 1 } p_iri { prefix_id: 3 name_id: 3 } o_iri { prefix_id: 2 } g_iri { } } } rows { name { value: "hasProvenance" } } rows { name { value: "provenance" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "hasPublicationInfo" } } rows { name { value: "pubinfo" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "type" } } rows { name { value: "Nanopublication" } } rows { quad { p_iri { prefix_id: 6 } o_iri { prefix_id: 3 } } } rows { prefix { value: "http://eurovoc.europa.eu/" } } rows { name { value: "3949" } } rows { prefix { value: "http://schema.org/" } } rows { name { value: "description" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 } o_literal { } g_iri { prefix_id: 2 name_id: 4 } } } rows { name { value: "name" } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Applied sciences" } } } rows { name { value: "DefinedTerm" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "3952" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Earth sciences" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { prefix { value: "https://ror.org/" } } rows { name { value: "04jcwf484" } } rows { name { value: "identifier" } } rows { quad { s_iri { prefix_id: 16 name_id: 17 } p_iri { prefix_id: 15 } o_literal { lex: "04jcwf484" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Nordic e-Infrastructure Collaboration" } } } rows { name { value: "Organization" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 19 } } } rows { prefix { id: 4 value: "http://xmlns.com/foaf/0.1/" } } rows { name { value: "Agent" } } rows { quad { o_iri { prefix_id: 4 } } } rows { prefix { value: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb/#" } } rows { name { value: "383fdb8f-1a4d-4702-a3bd-ccaf953c9ee5" } } rows { name { value: "geo" } } rows { name { value: "4d7f822d-2032-4f9b-a3c1-023bc91bd7b3" } } rows { quad { s_iri { prefix_id: 5 } p_iri { prefix_id: 15 } o_iri { prefix_id: 5 } } } rows { quad { p_iri { prefix_id: 15 name_id: 18 } o_literal { lex: "383fdb8f-1a4d-4702-a3bd-ccaf953c9ee5" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((6.152342408895493 36.11420992771953, 6.152342408895493 46.14432008685165, 19.042966514825824 46.14432008685165, 19.042966514825824 36.11420992771953, 6.152342408895493 36.11420992771953))" } } } rows { name { value: "Place" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 24 } } } rows { quad { s_iri { prefix_id: 5 name_id: 23 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((6.152342408895493 36.11420992771953, 6.152342408895493 46.14432008685165, 19.042966514825824 46.14432008685165, 19.042966514825824 36.11420992771953, 6.152342408895493 36.11420992771953))" } } } rows { name { value: "polygon" } } rows { quad { p_iri { name_id: 25 } o_literal { lex: "6.152342408895493 36.11420992771953, 6.152342408895493 46.14432008685165, 19.042966514825824 46.14432008685165, 19.042966514825824 36.11420992771953, 6.152342408895493 36.11420992771953" } } } rows { name { value: "GeoShape" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 26 } } } rows { prefix { id: 7 value: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb/" } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { name { value: "doi" } } rows { quad { s_iri { prefix_id: 7 name_id: 2 } p_iri { prefix_id: 8 name_id: 27 } o_literal { lex: "10.24424/2byf-7r07" } } } rows { prefix { value: "http://purl.org/wf4ever/roevo#" } } rows { name { value: "isFinalized" } } rows { quad { p_iri { prefix_id: 9 } o_literal { lex: "False" } } } rows { name { value: "isSnapshotOf" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/a802f7dc-f3f4-4eac-b69f-748fb90958fb" } } } rows { name { value: "snapshotedAtTime" } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:15.781374+00:00" } } } rows { name { value: "snapshotedBy" } } rows { quad { p_iri { } o_literal { lex: "mailto:pangeo.europe@gmail.com" } } } rows { name { value: "about" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 14 name_id: 12 } } } rows { quad { o_iri { name_id: 16 } } } rows { name { value: "author" } } rows { prefix { } } rows { name { value: "mailto:fcremer@bgc-jena.mpg.de" } } rows { quad { p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 10 } } } rows { name { value: "contentLocation" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 5 name_id: 21 } } } rows { name { value: "contentSize" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#integer" } } rows { quad { p_iri { prefix_id: 15 name_id: 36 } o_literal { lex: "163759" datatype: 1 } } } rows { name { value: "contentUrl" } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/ros/77a61d94-3318-4d33-a3c0-4730e7026fdb/crate/download/" } } } rows { name { value: "contributor" } } rows { name { value: "mailto:pangeo.europe@gmail.com" } } rows { quad { p_iri { } o_iri { prefix_id: 10 } } } rows { name { value: "creator" } } rows { quad { p_iri { prefix_id: 15 } } } rows { name { value: "dateCreated" } } rows { quad { p_iri { } o_literal { lex: "2022-09-02 19:02:01.731061+00:00" } } } rows { name { value: "dateModified" } } rows { quad { p_iri { } o_literal { lex: "2024-03-05 12:18:33.627372+00:00" } } } rows { name { value: "datePublished" } } rows { quad { p_iri { } o_literal { lex: "2022-09-02 19:02:01.731061+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "This talk is part of the Pangeo Show & Tell series and was given on September 1st 2022 by Felix Cremer.\n\nBio\nFelix Cremer received his diploma in mathematics from the University of Leipzig in 2014. In 2016 he started his PhD study on time series analysis of hypertemporal Sentinel-1 radar data. He currently works at the Max-Planck-Institute for Biogeochemistry on the development of the JuliaDataCubes ecosystem in the scope of the NFDI4Earth 5 project.\n\nAbstract\nThe Earth Data Lab (EDL) is a data cube framework in Julia for the efficient handling of raster data. It is based on the YAXArrays.jl package. YAXArrays.jl provides functionality to deal with labelled arrays, similar to the xarray python package and it also provides efficient and easy multithreading and distributed computation of user defined functions along arbitrary slices of the data.\nEarthDataLab.jl uses DiskArrays.jl in the backend to deal with out of memory datasets. In this Show-and-Tell Felix is going to give a short introduction into the EarthDataLab.jl package for raster data handling in Julia." } } } rows { name { value: "encodingFormat" } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "application/ld+json" } } } rows { name { value: "hasPart" } } rows { prefix { value: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb/folders/" } } rows { name { value: "2a45a187-ad60-409b-b420-9e0aacbcac47" } } rows { quad { p_iri { } o_iri { prefix_id: 11 } } } rows { name { value: "6352f4bf-092f-48f0-8a23-6e06448c8e1b" } } rows { quad { o_iri { } } } rows { name { value: "639f0f25-6ac3-4621-a752-545567d25b52" } } rows { quad { o_iri { } } } rows { name { value: "f70f40dc-6ff0-4831-ac1b-e17e56f5188f" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 18 } o_literal { lex: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb" } } } rows { name { value: "keywords" } } rows { quad { p_iri { name_id: 50 } o_literal { lex: "geodata" } } } rows { quad { o_literal { lex: "julia" } } } rows { name { value: "license" } } rows { prefix { value: "https://choosealicense.com/no-permission/" } } rows { quad { p_iri { } o_iri { prefix_id: 12 name_id: 2 } } } rows { name { value: "mainEntity" } } rows { quad { p_iri { prefix_id: 15 name_id: 52 } o_literal { lex: "Video" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Handling large geo data with Julia - snapshot" } } } rows { quad { o_literal { lex: "Handling large geo data with Julia" } } } rows { name { value: "publisher" } } rows { quad { p_iri { name_id: 53 } o_iri { prefix_id: 16 name_id: 17 } } } rows { prefix { value: "http://w3id.org/ro-id/rohub/model#" } } rows { name { value: "community" } } rows { name { value: "c019b3ba-6789-4d37-9e1a-66cf2c50662c" } } rows { quad { p_iri { prefix_id: 13 name_id: 54 } o_iri { prefix_id: 7 } } } rows { name { value: "creation_mode" } } rows { quad { p_iri { prefix_id: 13 } o_literal { lex: "MANUAL" } } } rows { prefix { id: 1 value: "http://w3id.org/ro/earth-science#" } } rows { name { value: "Concept" } } rows { quad { p_iri { prefix_id: 1 } o_literal { lex: "calculation" } } } rows { quad { o_literal { lex: "data" } } } rows { quad { o_literal { lex: "dataset" } } } rows { quad { o_literal { lex: "diploma" } } } rows { quad { o_literal { lex: "functionality" } } } rows { quad { o_literal { lex: "multithreading" } } } rows { quad { o_literal { lex: "parcel" } } } rows { quad { o_literal { lex: "time series" } } } rows { quad { o_literal { lex: "treatment" } } } rows { name { value: "FieldOfResearch" } } rows { quad { p_iri { } o_literal { lex: "earth sciences" } } } rows { name { value: "IPTC" } } rows { quad { p_iri { } o_literal { lex: "Library and museum" } } } rows { quad { o_literal { lex: "Science and technology" } } } rows { name { value: "Lemma" } } rows { quad { p_iri { } o_literal { lex: "EarthDataLab.jl" } } } rows { quad { o_literal { lex: "Felix Cremer" } } } rows { quad { o_literal { lex: "YAXArrays.jl" } } } rows { quad { o_literal { lex: "data" } } } rows { quad { o_literal { lex: "dataset" } } } rows { quad { o_literal { lex: "handling" } } } rows { quad { o_literal { lex: "raster data" } } } rows { name { value: "NASA" } } rows { quad { p_iri { } o_literal { lex: "mathematical and computer sciences" } } } rows { name { value: "Phrase" } } rows { quad { p_iri { } o_literal { lex: "YAXArrays.jl package" } } } rows { quad { o_literal { lex: "geo data" } } } rows { quad { o_literal { lex: "memory dataset" } } } rows { quad { o_literal { lex: "raster data handling" } } } rows { quad { o_literal { lex: "series analysis" } } } rows { name { value: "Sentence" } } rows { quad { p_iri { } o_literal { lex: "In this Show-and-Tell Felix is going to give a short introduction into the EarthDataLab.jl package for raster data handling in Julia." } } } rows { quad { o_literal { lex: "The Earth Data Lab (EDL) is a data cube framework in Julia for the efficient handling of raster data." } } } rows { quad { o_literal { lex: "This talk is part of the Pangeo Show & Tell series and was given on September 1st 2022 by Felix Cremer." } } } rows { name { value: "TimeReference" } } rows { quad { p_iri { } o_literal { lex: "In 2016" } } } rows { quad { o_literal { lex: "in 2014" } } } rows { quad { o_literal { lex: "on Sep-1-2022" } } } rows { prefix { id: 3 value: "http://www.opengis.net/ont/geosparql#" } } rows { name { value: "hasGeometry" } } rows { quad { p_iri { prefix_id: 3 } o_literal { lex: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb/abe09580-1113-4c77-a7d9-71f181341daf" } } } rows { prefix { id: 2 value: "http://purl.org/wf4ever/ro#" } } rows { name { value: "ResearchObject" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 2 name_id: 66 } } } rows { name { value: "SnapshotRO" } } rows { quad { o_iri { prefix_id: 9 } } } rows { name { value: "Dataset" } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "ExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 1 } } } rows { prefix { id: 4 value: "https://w3id.org/ro/terms/earth-science#" } } rows { quad { o_iri { prefix_id: 4 name_id: 69 } } } rows { prefix { id: 8 value: "https://w3id.org/contentdesc#" } } rows { name { value: "Domain" } } rows { quad { p_iri { prefix_id: 8 } o_literal { lex: "computer science" } } } rows { quad { o_literal { lex: "database" } } } rows { quad { p_iri { name_id: 24 } o_literal { lex: "Plovdiv" } } } rows { prefix { id: 14 value: "https://www.w3.org/ns/iana/link-relations/relation#" } } rows { name { value: "cite-as" } } rows { quad { p_iri { prefix_id: 14 name_id: 71 } o_literal { lex: "Felix Cremer, and Pangeo Europe. \"Handling large geo data with Julia.\" ROHub. Sep 02 ,2022. https://doi.org/10.24424/2byf-7r07." } } } rows { name { value: "abe09580-1113-4c77-a7d9-71f181341daf" } } rows { name { value: "asWKT" } } rows { quad { s_iri { prefix_id: 7 } p_iri { prefix_id: 3 } o_literal { lex: "POLYGON ((6.152342408895493 36.11420992771953, 6.152342408895493 46.14432008685165, 19.042966514825824 46.14432008685165, 19.042966514825824 36.11420992771953, 6.152342408895493 36.11420992771953))" } } } rows { name { value: "Geometry" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 74 } } } rows { prefix { id: 5 value: "http://www.opengis.net/ont/sf#" } } rows { name { value: "Polygon" } } rows { quad { o_iri { prefix_id: 5 } } } rows { quad { s_iri { prefix_id: 7 name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { prefix { id: 10 value: "https://w3id.org/ro-id/77a61d94-3318-4d33-a3c0-4730e7026fdb/resources/" } } rows { name { value: "0932cd4b-be0e-468b-8f5c-55fd09410343" } } rows { quad { s_iri { prefix_id: 11 name_id: 46 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 10 name_id: 76 } } } rows { name { value: "1fe8d85c-9a4e-4efe-bbec-1d3d1cadab7a" } } rows { quad { o_iri { } } } rows { name { value: "9b5c569a-f9bd-4147-9844-4d856bd858db" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "output" } } } rows { prefix { id: 12 value: "http://purl.org/wf4ever/wf4ever#" } } rows { name { value: "Folder" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 79 } } } rows { quad { o_iri { prefix_id: 15 name_id: 68 } } } rows { name { value: "5494c273-df00-440d-9aa7-8ed8ceea8d03" } } rows { quad { s_iri { prefix_id: 11 name_id: 47 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 10 name_id: 80 } } } rows { name { value: "d2dd9a75-2a21-4ba4-bf04-78b5fa966244" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "tool" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 79 } } } rows { quad { o_iri { prefix_id: 15 name_id: 68 } } } rows { name { value: "700034d4-cf1c-4c54-809e-e532a9276745" } } rows { quad { s_iri { prefix_id: 11 name_id: 48 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 10 name_id: 82 } } } rows { name { value: "c80ebbb8-90b6-467b-adb2-c6e637bac5b9" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "biblio" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 79 } } } rows { quad { o_iri { prefix_id: 15 name_id: 68 } } } rows { name { value: "0d22ef7c-c889-45a7-9fce-051b027f1915" } } rows { quad { s_iri { prefix_id: 11 name_id: 49 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 10 name_id: 84 } } } rows { name { value: "4f4d02a5-aa19-43ca-b816-7a69b6b6d103" } } rows { quad { o_iri { } } } rows { name { value: "6398008a-f0f0-441e-963d-20be3c9a1d88" } } rows { quad { o_iri { } } } rows { name { value: "7be40ed1-d34c-415c-8d9e-3465c7dfaf46" } } rows { quad { o_iri { } } } rows { name { value: "b96292fe-759a-411e-abfa-5d5c5853f3e5" } } rows { quad { o_iri { } } } rows { name { value: "bf9226da-8484-4fb8-9460-830f0ff8a561" } } rows { quad { o_iri { } } } rows { name { value: "f51a636c-57d5-4bb8-93a3-2b57cc245ae5" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "input" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 79 } } } rows { quad { o_iri { prefix_id: 15 name_id: 68 } } } rows { prefix { id: 16 } } rows { quad { s_iri { prefix_id: 10 name_id: 76 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://youtu.be/18_e8wmI9Os" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:13:04.311770+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:08.693363+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "This is the recorded talk from Felix Cremer during the Pangeo Show & Tell in September 1st, 2022. Felix is going through his Julia Notebook and explain us about handling large geo data with Julia." } } } rows { prefix { id: 2 value: "https://choosealicense.com/no-permission/" } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Youtube video \"Handling large geo data with julia by Felix Cremer.\"" } } } rows { name { value: "sdDatePublished" } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:13:04.311770+00:00" } } } rows { name { value: "Resource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 92 } } } rows { name { value: "MediaObject" } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "VideoObject" } } rows { quad { o_iri { } } } rows { quad { s_iri { prefix_id: 10 name_id: 84 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://raw.githubusercontent.com/JuliaDataCubes/ESDLTutorials/main/data/ne_50m_admin_0_countries.README.html" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:23:40.734491+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:10.091697+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Admin 0 & Countries | Natural Earth" } } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "text/html" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.README.html" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:23:40.734491+00:00" } } } rows { name { value: "Document" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 95 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 77 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://hackmd.io/@pangeo/showandtell" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-20 12:05:09.775445+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:12.569218+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "This is the shared document we use for all the Pangeo Show and Tell. We collect information, Q&A and feedback.\nEach Show and Tell has its own sub-section." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "HackMD Pangeo Show and Tell" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-20 12:05:09.775445+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 95 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 85 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://raw.githubusercontent.com/JuliaDataCubes/ESDLTutorials/main/data/ne_50m_admin_0_countries.cpg" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:26:00.758390+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:10.411799+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "cpg file from shapefile dataset." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.cpg" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:26:00.758390+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 95 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 80 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://raw.githubusercontent.com/JuliaDataCubes/ESDLTutorials/main/overallintro.ipynb" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:19:48.682613+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:09.458760+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Jupyter Notebook used by Felix during the Pangeo Show & Tell to demonstrate how to use EarthDataLab.jl to do large scale computations.\n\nTo execute this Jupyter Notebook, data contained in the \"input folder\" is needed (please create a folder called \"data\" in the folder where you have stored the notebook)." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "How to use EarthDataLab.jl to do large scale computations (Jupyter Notebook)" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:19:48.682613+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "JupyterNotebook" } } rows { quad { o_iri { prefix_id: 1 name_id: 96 } } } rows { quad { s_iri { prefix_id: 10 name_id: 86 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://raw.githubusercontent.com/JuliaDataCubes/ESDLTutorials/main/data/ne_50m_admin_0_countries.prj" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:27:59.472971+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:12.806251+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Part of ne_50m_admin_0_countries shapefile (projection information)." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.prj" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:27:59.472971+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 68 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 82 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://discourse.pangeo.io/t/september-1-2022-handling-large-geo-data-with-julia/2656" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:15:52.939627+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:10.738946+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "You will find here all the information published to advertise the Pangeo Show & Tell Talk frm Felix Cremer on \"Handling large geo data with Julia \"." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Pangeo discourse post announcing 1st September Show & Tell by Felix Cremer." } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:15:52.939627+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 95 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 87 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://raw.githubusercontent.com/JuliaDataCubes/ESDLTutorials/main/data/ne_50m_admin_0_countries.VERSION.txt" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:24:56.813174+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:08.830771+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Version" } } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "text/plain" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.VERSION.txt" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:24:56.813174+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 95 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 78 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 36 } o_literal { lex: "138593" datatype: 1 } } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/resources/9b5c569a-f9bd-4147-9844-4d856bd858db/download/" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:30:37.195378+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:15.216316+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Plot from the Julia Jupyter notebook." } } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "image/png" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "plot_italy_julia_pangeo_ST.png" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:30:37.195378+00:00" } } } rows { prefix { id: 9 value: "http://purl.org/wf4ever/roterms#" } } rows { name { value: "Sketch" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 97 } } } rows { quad { o_iri { prefix_id: 12 name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 88 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://github.com/JuliaDataCubes/ESDLTutorials/raw/main/data/ne_50m_admin_0_countries.dbf" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:27:25.914754+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:04:59.380562+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Part of ne_50m_admin_0_countries shapefile." } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.dbf" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:27:25.914754+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 68 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 89 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://github.com/JuliaDataCubes/ESDLTutorials/raw/main/data/ne_50m_admin_0_countries.shp" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:28:35.477795+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:01.072396+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Part of ne_50m_admin_0_countries shapefile." } } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "application/x-qgis" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.shp" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:28:35.477795+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 68 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 10 name_id: 83 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://juliadatacubes.github.io/YAXArrays.jl/dev/" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:18:10.607898+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:10.000002+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "YAXArrays.jl is another xarray-like Julia package.\n\nA package for operating on out-of-core labeled arrays, based on stores like NetCDF, Zarr or GDAL.\n\nPackage Features:\n\n- open datasets from a variety of sources (NetCDF, Zarr, ArchGDAL)\n- interoperability with other named axis packages through YAXArrayBase\n- efficient mapslices(x) operations on huge multiple arrays, optimized for high-latency data access (object storage, compressed datasets)" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "YAXArrays.jl Documentation" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:18:10.607898+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "SoftwareDocumentation" } } rows { quad { o_iri { prefix_id: 7 name_id: 98 } } } rows { quad { s_iri { prefix_id: 10 name_id: 81 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://github.com/JuliaDataCubes/ESDLTutorials" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:36:28.455672+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:08.571565+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "This will become a selection of tutorials on the use of ESDL.jl and YAXArrays.jl julia packages for the handling of large scale out-of-core geospatial datasets." } } } rows { quad { p_iri { name_id: 50 } o_literal { lex: "github" } } } rows { quad { p_iri { } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ESDLtutorial Github repository." } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:36:28.455672+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "SWDocumentation" } } rows { quad { o_iri { prefix_id: 1 name_id: 99 } } } rows { quad { s_iri { prefix_id: 10 name_id: 90 } p_iri { prefix_id: 15 name_id: 33 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "https://github.com/JuliaDataCubes/ESDLTutorials/raw/main/data/ne_50m_admin_0_countries.shx" } } } rows { quad { p_iri { name_id: 40 } o_iri { prefix_id: 16 name_id: 39 } } } rows { quad { p_iri { prefix_id: 15 name_id: 41 } o_literal { lex: "2022-09-02 19:29:06.833916+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2022-10-05 11:05:08.283815+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Part of ne_50m_admin_0_countries shapefile." } } } rows { quad { p_iri { name_id: 44 } o_literal { lex: "application/x-qgis" } } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ne_50m_admin_0_countries.shx" } } } rows { quad { p_iri { name_id: 91 } o_literal { lex: "2022-09-02 19:29:06.833916+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 68 } } } rows { quad { o_iri { name_id: 92 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "ro-crate-metadata.json" } } rows { prefix { id: 4 value: "http://purl.org/dc/terms/" } } rows { name { value: "conformsTo" } } rows { prefix { id: 8 value: "https://w3id.org/ro/crate/" } } rows { name { value: "1.1" } } rows { quad { s_iri { prefix_id: 7 name_id: 100 } p_iri { prefix_id: 4 } o_iri { prefix_id: 8 } } } rows { quad { p_iri { prefix_id: 15 name_id: 32 } o_iri { prefix_id: 7 name_id: 2 } } } rows { name { value: "CreativeWork" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 103 } } } rows { prefix { id: 14 value: "https://w3id.org/ro-id/" } } rows { name { value: "a802f7dc-f3f4-4eac-b69f-748fb90958fb" } } rows { prefix { id: 3 value: "http://purl.org/wf4ever/ro#" } } rows { quad { s_iri { prefix_id: 14 } o_iri { prefix_id: 3 name_id: 66 } } } rows { name { value: "affiliation" } } rows { quad { s_iri { prefix_id: 16 name_id: 34 } p_iri { prefix_id: 15 name_id: 105 } o_literal { lex: "Max-Planck-Institute (Germany)" } } } rows { name { value: "email" } } rows { quad { p_iri { } o_literal { lex: "fcremer@bgc-jena.mpg.de" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Felix Cremer" } } } rows { prefix { id: 5 value: "http://xmlns.com/foaf/0.1/" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 20 } } } rows { quad { s_iri { prefix_id: 16 name_id: 39 } p_iri { prefix_id: 15 name_id: 106 } o_literal { lex: "pangeo.europe@gmail.com" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Pangeo Europe" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 20 } } } rows { prefix { id: 13 value: "https://w3id.org/np/RA1I4NGHVC2hLnf2RYxP9GgtNXXhAhILSw-_BjUkNke9M/" } } rows { prefix { id: 11 value: "http://www.w3.org/ns/prov#" } } rows { name { value: "wasDerivedFrom" } } rows { prefix { id: 9 value: "https://api.rohub.org/api/ros/77a61d94-3318-4d33-a3c0-4730e7026fdb/crate/download/" } } rows { quad { s_iri { prefix_id: 13 name_id: 4 } p_iri { prefix_id: 11 name_id: 107 } o_iri { prefix_id: 9 name_id: 100 } g_iri { prefix_id: 13 name_id: 7 } } } rows { prefix { id: 1 value: "https://w3id.org/np/" } } rows { name { value: "created" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#dateTime" } } rows { quad { s_iri { prefix_id: 1 name_id: 1 } p_iri { prefix_id: 4 name_id: 108 } o_literal { lex: "2025-11-11T16:28:29.631+01:00" datatype: 2 } g_iri { prefix_id: 13 name_id: 9 } } } rows { prefix { id: 10 value: "http://purl.org/nanopub/x/" } } rows { name { value: "introduces" } } rows { quad { p_iri { prefix_id: 10 name_id: 109 } o_iri { prefix_id: 7 name_id: 2 } } } rows { name { value: "RoCrateNanopub" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 110 } } } rows { prefix { id: 2 value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { name { value: "label" } } rows { quad { p_iri { prefix_id: 2 } o_literal { lex: "Handling large geo data with Julia - snapshot" } } } rows { name { value: "sig" } } rows { name { value: "hasAlgorithm" } } rows { quad { s_iri { prefix_id: 13 } p_iri { prefix_id: 10 } o_literal { lex: "RSA" } } } rows { name { value: "hasPublicKey" } } rows { quad { p_iri { } o_literal { lex: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB" } } } rows { name { value: "hasSignature" } } rows { quad { p_iri { } o_literal { lex: "2xVXvlCWe9GIKSJNtW4kolcVD9yycEWxF9t0+VWouMGXllBgLX3RypTMfq2/LCkYnMxEhrotevYEUu5qPcupr2B9uZbl0mMndz3xYxguHQz9u24f8dJQx6rweDOFiBTDP8iRY/mlDguw7cbDXFKuTSCZoX/vwdVG0yl0V8Z4DzCLdLD9PSSx71bhAk0IaP+cQp+UjvDyVTVcQpYTh1P2Zh6KbK/AkZGdHWtJGx6ZFnjClrU3e2qUfHbQ411vEc/DSf4t/rLq4etBZwP1TR/XjnCgKf3U8Dmf47pJp1LlHSVSFf77nzZZOPCbJH19TSyFITsIQAXhndXcntGFhpcJ4Q==" } } } rows { name { value: "hasSignatureTarget" } } rows { quad { p_iri { } o_iri { prefix_id: 1 name_id: 1 } } } rows { name { value: "signedBy" } } rows { prefix { id: 12 value: "https://w3id.org/kpxl/gen/terms/" } } rows { name { value: "RoCrateBot" } } rows { quad { p_iri { prefix_id: 10 name_id: 117 } o_iri { prefix_id: 12 } } }