rows { options { physical_type: PHYSICAL_STREAM_TYPE_QUADS max_name_table_size: 128 max_prefix_table_size: 16 max_datatype_table_size: 16 logical_type: LOGICAL_STREAM_TYPE_DATASETS version: 2 } } rows { prefix { value: "https://w3id.org/np/" } } rows { name { value: "RAO3Siv0rUDabjaUTr6NKjXY4s35CjPCK-WzZgr_N3UMM" } } rows { namespace { name: "this" value { prefix_id: 1 } } } rows { prefix { value: "https://w3id.org/np/RAO3Siv0rUDabjaUTr6NKjXY4s35CjPCK-WzZgr_N3UMM/" } } rows { name { } } rows { namespace { name: "sub" value { prefix_id: 2 } } } rows { prefix { value: "http://www.nanopub.org/nschema#" } } rows { namespace { name: "np" value { prefix_id: 3 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { namespace { name: "dct" value { prefix_id: 4 name_id: 2 } } } rows { prefix { value: "http://purl.org/pav/" } } rows { namespace { name: "pav" value { prefix_id: 5 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/1999/02/22-rdf-syntax-ns#" } } rows { namespace { name: "rdf" value { prefix_id: 6 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2002/07/owl#" } } rows { namespace { name: "owl" value { prefix_id: 7 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2004/03/trix/rdfg-1/" } } rows { namespace { name: "rdfg" value { prefix_id: 8 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/elements/1.1/" } } rows { namespace { name: "dce" value { prefix_id: 9 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2001/XMLSchema#" } } rows { namespace { name: "xsd" value { prefix_id: 10 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { namespace { name: "rdfs" value { prefix_id: 11 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/ns/prov#" } } rows { namespace { name: "prov" value { prefix_id: 12 name_id: 2 } } } rows { prefix { value: "http://purl.org/nanopub/x/" } } rows { namespace { name: "npx" value { prefix_id: 13 name_id: 2 } } } rows { name { value: "hasAssertion" } } rows { name { value: "assertion" } } rows { name { value: "Head" } } rows { quad { s_iri { prefix_id: 1 name_id: 1 } p_iri { prefix_id: 3 name_id: 3 } o_iri { prefix_id: 2 } g_iri { } } } rows { name { value: "hasProvenance" } } rows { name { value: "provenance" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "hasPublicationInfo" } } rows { name { value: "pubinfo" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "type" } } rows { name { value: "Nanopublication" } } rows { quad { p_iri { prefix_id: 6 } o_iri { prefix_id: 3 } } } rows { prefix { value: "http://eurovoc.europa.eu/" } } rows { name { value: "2114" } } rows { prefix { value: "http://schema.org/" } } rows { name { value: "description" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 } o_literal { } g_iri { prefix_id: 2 name_id: 4 } } } rows { name { value: "name" } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Oceanography" } } } rows { name { value: "DefinedTerm" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "2919" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Environmental research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "c_a935cf3f" } } rows { quad { s_iri { prefix_id: 14 name_id: 17 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Earth observation" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { prefix { value: "https://w3id.org/ro-id/" } } rows { name { value: "02e3c75c-977e-441a-84d2-e5e2b4fd373e" } } rows { quad { s_iri { prefix_id: 16 name_id: 18 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery notebook" } } } rows { prefix { id: 4 value: "https://w3id.org/ro/terms/earth-science#" } } rows { name { value: "Phrase" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 19 } } } rows { name { value: "normScore" } } rows { quad { p_iri { } o_literal { lex: "43.336724313326556" } } } rows { name { value: "score" } } rows { quad { p_iri { } o_literal { lex: "42.6" } } } rows { name { value: "108ff0bd-b0de-4305-9927-a88de694b325" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "physical object" } } } rows { name { value: "Concept" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "11.511789181692096" } } } rows { quad { p_iri { } o_literal { lex: "8.3" } } } rows { prefix { value: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/#" } } rows { name { value: "105f09b9-47be-4ca1-9262-fad1c4f7ba3c" } } rows { name { value: "geo" } } rows { name { value: "fd3b3072-f967-4d63-8372-5ee216448dc8" } } rows { quad { s_iri { prefix_id: 5 name_id: 24 } p_iri { prefix_id: 15 } o_iri { prefix_id: 5 } } } rows { name { value: "identifier" } } rows { quad { p_iri { prefix_id: 15 } o_literal { lex: "105f09b9-47be-4ca1-9262-fad1c4f7ba3c" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { name { value: "Place" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 28 } } } rows { name { value: "173cee7b-409f-4157-92fc-6554df1b7e9c" } } rows { quad { s_iri { prefix_id: 5 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { name { value: "polygon" } } rows { quad { p_iri { name_id: 30 } o_literal { lex: "-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054" } } } rows { name { value: "GeoShape" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 31 } } } rows { name { value: "1c76cefd-fff6-4b21-a37a-de59ab9c2042" } } rows { quad { s_iri { prefix_id: 5 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { name_id: 30 } o_literal { lex: "119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 31 } } } rows { name { value: "3cbacdad-e5c9-43de-bd48-4ea2eac57e00" } } rows { quad { s_iri { prefix_id: 5 name_id: 33 } p_iri { prefix_id: 15 name_id: 25 } o_iri { prefix_id: 5 name_id: 29 } } } rows { quad { p_iri { prefix_id: 15 name_id: 27 } o_literal { lex: "3cbacdad-e5c9-43de-bd48-4ea2eac57e00" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 28 } } } rows { name { value: "9942e93e-7cd1-41d2-8ba0-dfbe2cca9ebb" } } rows { quad { s_iri { prefix_id: 5 name_id: 34 } p_iri { prefix_id: 15 name_id: 25 } o_iri { prefix_id: 5 name_id: 32 } } } rows { quad { p_iri { prefix_id: 15 name_id: 27 } o_literal { lex: "9942e93e-7cd1-41d2-8ba0-dfbe2cca9ebb" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 28 } } } rows { name { value: "b7f011f5-7272-4432-8e4b-a4f7f7b39969" } } rows { name { value: "e008a487-f6f3-4268-9025-3156fd81c9aa" } } rows { quad { s_iri { prefix_id: 5 name_id: 35 } p_iri { prefix_id: 15 name_id: 25 } o_iri { prefix_id: 5 name_id: 36 } } } rows { quad { p_iri { prefix_id: 15 name_id: 27 } o_literal { lex: "b7f011f5-7272-4432-8e4b-a4f7f7b39969" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 28 } } } rows { quad { s_iri { prefix_id: 5 name_id: 36 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { name_id: 30 } o_literal { lex: "-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 31 } } } rows { name { value: "enrichment_service-account-enrichment" } } rows { quad { s_iri { prefix_id: 5 name_id: 37 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "service-account-enrichment" } } } rows { prefix { id: 7 value: "http://xmlns.com/foaf/0.1/" } } rows { name { value: "Agent" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 38 } } } rows { quad { s_iri { prefix_id: 5 name_id: 26 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { quad { p_iri { name_id: 30 } o_literal { lex: "26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 31 } } } rows { prefix { value: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/" } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { name { value: "doi" } } rows { quad { s_iri { prefix_id: 8 name_id: 2 } p_iri { prefix_id: 9 name_id: 39 } o_literal { lex: "https://doi.org/10.24424/cq0k-h769" } } } rows { prefix { value: "http://purl.org/wf4ever/roevo#" } } rows { name { value: "isFinalized" } } rows { quad { p_iri { prefix_id: 10 } o_literal { lex: "False" } } } rows { name { value: "isSnapshotOf" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a9" } } } rows { name { value: "snapshotedAtTime" } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:52.755983+00:00" } } } rows { name { value: "snapshotedBy" } } rows { quad { p_iri { } o_literal { lex: "mailto:environmental.ds.book@gmail.com" } } } rows { name { value: "about" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 14 name_id: 12 } } } rows { quad { o_iri { name_id: 16 } } } rows { quad { o_iri { } } } rows { name { value: "author" } } rows { prefix { value: "mailto:https://orcid.org/" } } rows { name { value: "0000-0002-9480-7387" } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 11 } } } rows { name { value: "0000-0003-0808-3480" } } rows { quad { o_iri { } } } rows { name { value: "contentLocation" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 5 name_id: 24 } } } rows { quad { o_iri { name_id: 33 } } } rows { quad { o_iri { } } } rows { quad { o_iri { } } } rows { name { value: "contentSize" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#integer" } } rows { quad { p_iri { prefix_id: 15 name_id: 49 } o_literal { lex: "1818450" datatype: 1 } } } rows { name { value: "contentUrl" } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/ros/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/crate/download/" } } } rows { name { value: "contributor" } } rows { prefix { value: "mailto:https://github.com/" } } rows { name { value: "acocac" } } rows { quad { p_iri { } o_iri { prefix_id: 12 } } } rows { name { value: "copyrightHolder" } } rows { prefix { } } rows { name { value: "mailto:environmental.ds.book@gmail.com" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 13 } } } rows { name { value: "creator" } } rows { quad { p_iri { prefix_id: 15 } } } rows { name { value: "dateCreated" } } rows { quad { p_iri { } o_literal { lex: "2022-01-28 16:07:18.008253+00:00" } } } rows { name { value: "dateModified" } } rows { quad { p_iri { } o_literal { lex: "2024-03-05 12:17:35.222594+00:00" } } } rows { name { value: "datePublished" } } rows { quad { p_iri { } o_literal { lex: "2022-01-28 16:07:18.008253+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book." } } } rows { name { value: "encodingFormat" } } rows { quad { p_iri { name_id: 59 } o_literal { lex: "application/ld+json" } } } rows { name { value: "hasPart" } } rows { prefix { id: 1 value: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/folders/" } } rows { name { value: "4695b103-c3b9-4168-b836-e66f9b08c01d" } } rows { quad { p_iri { } o_iri { prefix_id: 1 } } } rows { name { value: "a57ba440-860a-472a-a8f7-596206b13165" } } rows { quad { o_iri { } } } rows { name { value: "b6d0a5af-bea5-45fe-9160-f75847afa153" } } rows { quad { o_iri { } } } rows { name { value: "cb913830-5747-4a6d-acff-83240833d08d" } } rows { quad { o_iri { } } } rows { prefix { id: 3 value: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/resources/" } } rows { name { value: "d5cbc677-05e5-482d-a591-f08ef03c0e81" } } rows { quad { o_iri { prefix_id: 3 } } } rows { quad { p_iri { prefix_id: 15 name_id: 27 } o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a" } } } rows { name { value: "keywords" } } rows { quad { p_iri { name_id: 66 } o_literal { lex: "Environmental Science" } } } rows { name { value: "license" } } rows { prefix { id: 2 value: "https://choosealicense.com/no-permission/" } } rows { quad { p_iri { } o_iri { prefix_id: 2 name_id: 2 } } } rows { name { value: "mainEntity" } } rows { quad { p_iri { prefix_id: 15 name_id: 68 } o_literal { lex: "Jupyter Notebook" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" } } } rows { quad { o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book" } } } rows { name { value: "publisher" } } rows { quad { p_iri { name_id: 69 } o_iri { prefix_id: 13 name_id: 54 } } } rows { prefix { id: 16 value: "http://w3id.org/ro-id/rohub/model#" } } rows { name { value: "community" } } rows { name { value: "379a4687-de50-44c7-b7bd-37125ebd4ff7" } } rows { quad { p_iri { prefix_id: 16 name_id: 70 } o_iri { prefix_id: 8 } } } rows { name { value: "creation_mode" } } rows { quad { p_iri { prefix_id: 16 } o_literal { lex: "MANUAL" } } } rows { prefix { id: 4 value: "http://www.opengis.net/ont/geosparql#" } } rows { name { value: "hasGeometry" } } rows { quad { p_iri { prefix_id: 4 } o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/0edc91a9-9049-4357-bad7-677880c8fd8a" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/19f9ef3f-8678-48f5-a9ac-cf364939dcda" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/4b55fad1-092b-4657-a004-aafc05499e18" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/e2eba045-3c2c-44a1-aa39-06cc232d05f9" } } } rows { prefix { id: 7 value: "http://purl.org/wf4ever/ro#" } } rows { name { value: "ResearchObject" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 74 } } } rows { name { value: "SnapshotRO" } } rows { quad { o_iri { prefix_id: 10 } } } rows { name { value: "Dataset" } } rows { quad { o_iri { prefix_id: 15 } } } rows { prefix { id: 9 value: "http://w3id.org/ro/" } } rows { name { value: "earth-scienceExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 9 } } } rows { prefix { id: 14 value: "https://w3id.org/ro/terms/earth-science#" } } rows { name { value: "ExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 14 } } } rows { prefix { id: 11 value: "https://w3id.org/contentdesc#" } } rows { name { value: "Domain" } } rows { quad { p_iri { prefix_id: 11 } o_literal { lex: "https://w3id.org/ro-id/c3ed4115-e129-474c-b43d-4b7ed1e44411" } } } rows { quad { p_iri { prefix_id: 14 name_id: 23 } o_literal { lex: "https://w3id.org/ro-id/108ff0bd-b0de-4305-9927-a88de694b325" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/4503a6f5-792d-422c-8d64-345f3db6b1c1" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/47ced8c1-777f-4ef7-9e76-468147890437" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/5f6ed1ba-6096-43ff-923c-78a2702c01f7" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/65d47f21-d901-4b2b-8974-67e3d88b6749" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/8c57a69d-6767-4445-a8aa-3266b2f44c1f" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/950aac7e-50fa-47dd-82cf-e0c3dee413a9" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/97fbcd8b-261a-4dbd-b34e-7cfa567e0743" } } } rows { name { value: "FieldOfResearch" } } rows { quad { p_iri { name_id: 80 } o_literal { lex: "https://w3id.org/ro-id/2c0dffab-b0cb-40c3-9cf6-b64738d8af0b" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/978afb41-9d02-423b-b299-501c9b89ad1e" } } } rows { name { value: "IPTC" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/163c83be-2ee7-402b-835c-ca5cc20c43c6" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/2d238204-5886-447d-b3ab-206367ad511c" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/aef07bda-564b-47c2-bc83-71d8d2e38985" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/fa9ab5e5-83fd-4f5f-b4d1-7a4364be87e3" } } } rows { name { value: "Lemma" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/172e5958-b68d-453e-aae8-0755f5d744e2" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/2185b762-02f1-4cdf-b9a3-7a77f9902ce7" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/368a358e-926d-4d70-9b65-d7449b2c7422" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/43fae290-ef3e-4812-993d-406ae623f466" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/831f29a8-3d29-45fd-bf6e-003440d7796c" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/96773044-7502-4b92-bed3-18ce701ee448" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/ec3b493e-c514-45f1-ad86-48c70995b511" } } } rows { name { value: "NASA" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/14df5ee1-7105-4162-9ec2-f8fa8a984a23" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/7b089c66-0928-4619-b9a2-613f513494b5" } } } rows { quad { p_iri { name_id: 19 } o_literal { lex: "https://w3id.org/ro-id/02e3c75c-977e-441a-84d2-e5e2b4fd373e" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/4a888bb5-e439-43d4-a6d3-1c9d15b1ccb4" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/66ce8c04-5a06-4dad-8169-2ae6b2d33b3b" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/69ac3651-313f-423f-9b58-1e2ae9a65cc1" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/80649e48-b201-4e96-8deb-0d65b3807d04" } } } rows { name { value: "Sentence" } } rows { quad { p_iri { name_id: 84 } o_literal { lex: "https://w3id.org/ro-id/66c9fa6b-a6c6-43fb-8d40-105615be1c7a" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/937fa6a4-c8ef-4330-b69d-97a44da87910" } } } rows { prefix { id: 5 value: "https://www.w3.org/ns/iana/link-relations/relation#" } } rows { name { value: "cite-as" } } rows { quad { p_iri { prefix_id: 5 } o_literal { lex: "Raquel Carmo, Jamila Mifdal, and Alejandro Coca-Castro. \"Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book.\" ROHub. Jan 28 ,2022. https://doi.org/10.24424/cq0k-h769." } } } rows { quad { s_iri { prefix_id: 8 name_id: 71 } p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 16 name_id: 70 } } } rows { name { value: "40b7536d-d825-469e-acee-610571cce767" } } rows { quad { s_iri { prefix_id: 1 name_id: 61 } p_iri { prefix_id: 15 name_id: 60 } o_iri { prefix_id: 3 name_id: 86 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "input" } } } rows { prefix { id: 12 value: "http://purl.org/wf4ever/wf4ever#" } } rows { name { value: "Folder" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 name_id: 76 } } } rows { name { value: "19979f2d-aea2-4aee-90ff-cb798e83a0a4" } } rows { quad { s_iri { prefix_id: 1 name_id: 62 } p_iri { prefix_id: 15 name_id: 60 } o_iri { prefix_id: 3 name_id: 88 } } } rows { name { value: "3a0fb131-7ab6-4e09-88f9-f4a13ade3b62" } } rows { quad { o_iri { } } } rows { name { value: "59040258-cb01-4226-a29d-22e966583f82" } } rows { quad { o_iri { } } } rows { name { value: "76e24bca-c1b1-4198-b7fd-62f1ce7b2276" } } rows { quad { o_iri { } } } rows { name { value: "b74d8bd6-0903-49a9-b18e-41f35ce0ea46" } } rows { quad { o_iri { } } } rows { name { value: "cf66ee21-884c-4b1e-934d-f67dc0ee8947" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "tool" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 name_id: 76 } } } rows { name { value: "1bbee21e-677a-4e43-a2f1-11ba5842dacf" } } rows { quad { s_iri { prefix_id: 1 name_id: 63 } p_iri { prefix_id: 15 name_id: 60 } o_iri { prefix_id: 3 name_id: 94 } } } rows { name { value: "edbbcddb-8e80-4cc8-96bd-30ed44319dcf" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "biblio" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 name_id: 76 } } } rows { name { value: "d0f4fb6b-6e29-4f19-b840-f3dd4d36fad1" } } rows { quad { s_iri { prefix_id: 1 name_id: 64 } p_iri { prefix_id: 15 name_id: 60 } o_iri { prefix_id: 3 name_id: 96 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "output" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 name_id: 76 } } } rows { quad { s_iri { prefix_id: 3 name_id: 88 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-osx-64.lock" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-31 11:16:56.332731+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:45.561179+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for osx-64 OS of the Jupyter Book hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for osx-64" } } } rows { name { value: "sdDatePublished" } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-31 11:16:56.332731+00:00" } } } rows { name { value: "Resource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { name { value: "MediaObject" } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 94 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-28 16:07:43.339740+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:47.348408+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Publication with further details of the modelling published in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Towards detecting floating objects on a global scale with learned spatial features using sentinel 2" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-28 16:07:43.339740+00:00" } } } rows { prefix { id: 4 value: "http://purl.org/dc/terms/" } } rows { name { value: "BibliographicResource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 100 } } } rows { quad { o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 89 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/requirements.txt" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-31 11:27:45.283002+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:45.892002+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Pip requirements file containing libraries to install after conda lock" } } } rows { quad { p_iri { name_id: 59 } o_literal { lex: "text/plain" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Pip requirements for lock conda environments" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-31 11:27:45.283002+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 86 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://doi.org/10.5281/zenodo.5827376" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-28 16:07:34.662177+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:45.435827+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains input analysis-ready input images used in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Input images" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-28 16:07:34.662177+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 76 } } } rows { quad { o_iri { name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 90 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://edsbook.org/gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/notebook.html" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-31 11:16:52.095424+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:52.081520+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 59 } o_literal { lex: "text/html" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Online rendered version of the Jupyter notebook" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-31 11:16:52.095424+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "publication" } } rows { quad { o_iri { name_id: 101 } } } rows { quad { s_iri { prefix_id: 3 name_id: 91 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/.binder/environment.yml" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-31 11:32:03.379546+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:48.262597+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Conda environment when user want to have the same libraries installed without concerns of package versions" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Conda environment" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-31 11:32:03.379546+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 92 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-linux-64.lock" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-31 11:16:54.901085+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:48.148379+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for linux-64 OS of the Jupyter Book hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for linux-64" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-31 11:16:54.901085+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 93 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/notebook.ipynb" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-28 16:07:32.857476+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:47.437056+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Jupyter notebook" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-28 16:07:32.857476+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "earth-scienceJupyterNotebook" } } rows { quad { o_iri { prefix_id: 9 name_id: 102 } } } rows { prefix { id: 7 value: "https://schema.org/" } } rows { name { value: "softwareRequirements" } } rows { quad { p_iri { prefix_id: 7 } o_literal { lex: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/resources/83b2492d-b4bb-4f8c-acc9-775e288a971c" } } } rows { quad { s_iri { prefix_id: 3 name_id: 96 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://doi.org/10.5281/zenodo.5911143" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-28 16:07:38.160206+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:52.658455+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains outputs, (predictions and interactive figure), generated in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Outputs" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-28 16:07:38.160206+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 76 } } } rows { quad { o_iri { name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 65 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 49 } o_literal { lex: "1799691" datatype: 1 } } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/resources/d5cbc677-05e5-482d-a591-f08ef03c0e81/download/" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2023-03-05 21:59:06.519381+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:46.790872+00:00" } } } rows { quad { p_iri { name_id: 59 } o_literal { lex: "image/png" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "sketch_680px.png" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2023-03-05 21:59:06.519381+00:00" } } } rows { prefix { id: 10 value: "http://purl.org/wf4ever/roterms#" } } rows { name { value: "Sketch" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 104 } } } rows { quad { o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 95 } p_iri { prefix_id: 15 name_id: 45 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 50 } o_literal { lex: "https://210507-004.oceansvirtual.com/view/content/skdwP611e3583eba2b/ecf65c2aaf278557ad05c213247d67a54196c9376a0aed8f1875681f182daeed" } } } rows { quad { p_iri { name_id: 55 } o_iri { prefix_id: 13 name_id: 54 } } } rows { quad { p_iri { prefix_id: 15 name_id: 56 } o_literal { lex: "2022-01-28 16:07:40.875698+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:23:52.401518+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Related publication of the modelling published in OCEANS 2021" } } } rows { quad { p_iri { name_id: 67 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Detecting macro floating objects on coastal water bodies using sentinel-2 data" } } } rows { quad { p_iri { name_id: 97 } o_literal { lex: "2022-01-28 16:07:40.875698+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 100 } } } rows { quad { o_iri { prefix_id: 12 name_id: 98 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "ro-crate-metadata.json" } } rows { name { value: "conformsTo" } } rows { prefix { value: "https://w3id.org/ro/crate/" } } rows { name { value: "1.1" } } rows { quad { s_iri { prefix_id: 8 name_id: 105 } p_iri { prefix_id: 4 } o_iri { prefix_id: 11 } } } rows { quad { p_iri { prefix_id: 15 name_id: 44 } o_iri { prefix_id: 8 name_id: 2 } } } rows { name { value: "CreativeWork" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 108 } } } rows { prefix { id: 14 value: "https://w3id.org/ro-id/" } } rows { name { value: "14df5ee1-7105-4162-9ec2-f8fa8a984a23" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "communications and radar" } } } rows { prefix { id: 5 value: "https://w3id.org/ro/terms/earth-science#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 83 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5148147940635681" } } } rows { name { value: "163c83be-2ee7-402b-835c-ca5cc20c43c6" } } rows { quad { s_iri { prefix_id: 14 name_id: 110 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Literature" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 81 } } } rows { name { value: "path" } } rows { quad { p_iri { name_id: 111 } o_literal { lex: "Arts, culture and entertainment/Arts and entertainment/Literature" } } } rows { name { value: "172e5958-b68d-453e-aae8-0755f5d744e2" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "11.76470588235294" } } } rows { quad { p_iri { } o_literal { lex: "9.4" } } } rows { name { value: "2185b762-02f1-4cdf-b9a3-7a77f9902ce7" } } rows { quad { s_iri { prefix_id: 14 name_id: 113 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "16.02002503128911" } } } rows { quad { p_iri { } o_literal { lex: "12.8" } } } rows { name { value: "2c0dffab-b0cb-40c3-9cf6-b64738d8af0b" } } rows { quad { s_iri { prefix_id: 14 name_id: 114 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "geology" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 80 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5625630021095276" } } } rows { name { value: "2d238204-5886-447d-b3ab-206367ad511c" } } rows { quad { s_iri { prefix_id: 14 name_id: 115 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Language" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 81 } } } rows { quad { p_iri { name_id: 111 } o_literal { lex: "Arts, culture and entertainment/Culture/Language" } } } rows { name { value: "368a358e-926d-4d70-9b65-d7449b2c7422" } } rows { quad { s_iri { prefix_id: 14 name_id: 116 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "13.642052565707132" } } } rows { quad { p_iri { } o_literal { lex: "10.9" } } } rows { name { value: "43fae290-ef3e-4812-993d-406ae623f466" } } rows { quad { s_iri { prefix_id: 14 name_id: 117 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "12.891113892365455" } } } rows { quad { p_iri { } o_literal { lex: "10.3" } } } rows { name { value: "4503a6f5-792d-422c-8d64-345f3db6b1c1" } } rows { quad { s_iri { prefix_id: 14 name_id: 118 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "14.147018030513175" } } } rows { quad { p_iri { } o_literal { lex: "10.2" } } } rows { name { value: "47ced8c1-777f-4ef7-9e76-468147890437" } } rows { quad { s_iri { prefix_id: 14 name_id: 119 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "9.431345353675452" } } } rows { quad { p_iri { } o_literal { lex: "6.8" } } } rows { name { value: "4a888bb5-e439-43d4-a6d3-1c9d15b1ccb4" } } rows { quad { s_iri { prefix_id: 14 name_id: 120 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "34.28280773143439" } } } rows { quad { p_iri { } o_literal { lex: "33.7" } } } rows { name { value: "5f6ed1ba-6096-43ff-923c-78a2702c01f7" } } rows { quad { s_iri { prefix_id: 14 name_id: 121 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "learning" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "10.540915395284328" } } } rows { quad { p_iri { } o_literal { lex: "7.6" } } } rows { name { value: "65d47f21-d901-4b2b-8974-67e3d88b6749" } } rows { quad { s_iri { prefix_id: 14 name_id: 122 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "detection" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "15.395284327323164" } } } rows { quad { p_iri { } o_literal { lex: "11.1" } } } rows { name { value: "66c9fa6b-a6c6-43fb-8d40-105615be1c7a" } } rows { quad { s_iri { prefix_id: 14 name_id: 123 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book." } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 84 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "43.54354354354354" } } } rows { quad { p_iri { } o_literal { lex: "43.5" } } } rows { name { value: "66ce8c04-5a06-4dad-8169-2ae6b2d33b3b" } } rows { quad { s_iri { prefix_id: 14 name_id: 124 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "15.259409969481181" } } } rows { quad { p_iri { } o_literal { lex: "15.0" } } } rows { name { value: "69ac3651-313f-423f-9b58-1e2ae9a65cc1" } } rows { quad { s_iri { prefix_id: 14 name_id: 125 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "deep learning" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "5.391658189216684" } } } rows { quad { p_iri { } o_literal { lex: "5.3" } } } rows { name { value: "7b089c66-0928-4619-b9a2-613f513494b5" } } rows { quad { s_iri { prefix_id: 14 name_id: 126 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "engineering" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 83 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5148147940635681" } } } rows { name { value: "80649e48-b201-4e96-8deb-0d65b3807d04" } } rows { quad { s_iri { prefix_id: 14 name_id: 127 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "refer to the detecting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "1.7293997965412005" } } } rows { quad { p_iri { } o_literal { lex: "1.7" } } } rows { name { value: "831f29a8-3d29-45fd-bf6e-003440d7796c" } } rows { quad { s_iri { prefix_id: 14 name_id: 128 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "12.891113892365455" } } } rows { quad { p_iri { } o_literal { lex: "10.3" } } } rows { name { id: 1 value: "8c57a69d-6767-4445-a8aa-3266b2f44c1f" } } rows { quad { s_iri { prefix_id: 14 name_id: 1 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "13.730929264909848" } } } rows { quad { p_iri { } o_literal { lex: "9.9" } } } rows { name { id: 3 value: "937fa6a4-c8ef-4330-b69d-97a44da87910" } } rows { quad { s_iri { prefix_id: 14 name_id: 3 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book." } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 84 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "56.45645645645645" } } } rows { quad { p_iri { } o_literal { lex: "56.4" } } } rows { name { id: 5 value: "950aac7e-50fa-47dd-82cf-e0c3dee413a9" } } rows { quad { s_iri { prefix_id: 14 name_id: 5 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "12.621359223300972" } } } rows { quad { p_iri { } o_literal { lex: "9.1" } } } rows { name { value: "96773044-7502-4b92-bed3-18ce701ee448" } } rows { quad { s_iri { prefix_id: 14 name_id: 6 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "detecting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "15.269086357947433" } } } rows { quad { p_iri { } o_literal { lex: "12.2" } } } rows { name { value: "978afb41-9d02-423b-b299-501c9b89ad1e" } } rows { quad { s_iri { prefix_id: 14 name_id: 7 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "earth sciences" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 80 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5625630021095276" } } } rows { name { value: "97fbcd8b-261a-4dbd-b34e-7cfa567e0743" } } rows { quad { s_iri { prefix_id: 14 name_id: 8 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 23 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "12.621359223300972" } } } rows { quad { p_iri { } o_literal { lex: "9.1" } } } rows { name { value: "aef07bda-564b-47c2-bc83-71d8d2e38985" } } rows { quad { s_iri { prefix_id: 14 name_id: 9 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Book industry" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 81 } } } rows { quad { p_iri { name_id: 111 } o_literal { lex: "Economy, business and finance/Economic sector/Media/Book industry" } } } rows { prefix { id: 16 value: "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a/" } } rows { name { id: 11 value: "0edc91a9-9049-4357-bad7-677880c8fd8a" } } rows { prefix { id: 1 value: "http://www.opengis.net/ont/geosparql#" } } rows { name { id: 4 value: "asWKT" } } rows { quad { s_iri { prefix_id: 16 name_id: 11 } p_iri { prefix_id: 1 name_id: 4 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { name { id: 15 value: "Geometry" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 15 } } } rows { prefix { id: 9 value: "http://www.opengis.net/ont/sf#" } } rows { name { id: 18 value: "Polygon" } } rows { quad { o_iri { prefix_id: 9 name_id: 18 } } } rows { name { id: 22 value: "19f9ef3f-8678-48f5-a9ac-cf364939dcda" } } rows { quad { s_iri { prefix_id: 16 name_id: 22 } p_iri { prefix_id: 1 name_id: 4 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 15 } } } rows { quad { o_iri { prefix_id: 9 name_id: 18 } } } rows { name { id: 29 value: "4b55fad1-092b-4657-a004-aafc05499e18" } } rows { quad { s_iri { prefix_id: 16 name_id: 29 } p_iri { prefix_id: 1 name_id: 4 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 15 } } } rows { quad { o_iri { prefix_id: 9 name_id: 18 } } } rows { name { id: 32 value: "e2eba045-3c2c-44a1-aa39-06cc232d05f9" } } rows { quad { s_iri { prefix_id: 16 name_id: 32 } p_iri { prefix_id: 1 name_id: 4 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 15 } } } rows { quad { o_iri { prefix_id: 9 name_id: 18 } } } rows { name { id: 25 value: "b34facfa-cea8-48f5-89f6-f11ce00812a9" } } rows { prefix { id: 7 value: "http://purl.org/wf4ever/ro#" } } rows { quad { s_iri { prefix_id: 14 name_id: 25 } o_iri { prefix_id: 7 name_id: 74 } } } rows { name { id: 28 value: "c3ed4115-e129-474c-b43d-4b7ed1e44411" } } rows { quad { s_iri { prefix_id: 14 name_id: 28 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "publishing" } } } rows { prefix { id: 10 value: "https://w3id.org/contentdesc#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 79 } } } rows { quad { p_iri { prefix_id: 5 name_id: 20 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "4.8" } } } rows { name { id: 36 value: "ec3b493e-c514-45f1-ad86-48c70995b511" } } rows { quad { s_iri { prefix_id: 14 name_id: 36 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Sentinel-2" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 82 } } } rows { quad { p_iri { name_id: 20 } o_literal { lex: "17.521902377972463" } } } rows { quad { p_iri { } o_literal { lex: "14.0" } } } rows { name { value: "fa9ab5e5-83fd-4f5f-b4d1-7a4364be87e3" } } rows { quad { s_iri { prefix_id: 14 name_id: 37 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Education" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 81 } } } rows { quad { p_iri { name_id: 111 } o_literal { lex: "Education" } } } rows { name { value: "email" } } rows { quad { s_iri { prefix_id: 13 name_id: 54 } p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "environmental.ds.book@gmail.com" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Environmental Data Science Book Community" } } } rows { name { id: 26 value: "Person" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 26 } } } rows { prefix { id: 3 value: "http://xmlns.com/foaf/0.1/" } } rows { name { id: 30 value: "Agent" } } rows { quad { o_iri { prefix_id: 3 name_id: 30 } } } rows { prefix { id: 2 value: "mailto:https://github.com/" } } rows { name { value: "affiliation" } } rows { quad { s_iri { prefix_id: 2 name_id: 52 } p_iri { prefix_id: 15 name_id: 31 } o_literal { lex: "The Alan Turing Institute" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Alejandro Coca-Castro" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 30 } } } rows { prefix { id: 12 value: "mailto:https://orcid.org/" } } rows { quad { s_iri { prefix_id: 12 name_id: 46 } p_iri { prefix_id: 15 name_id: 31 } o_literal { lex: "European Space Agency \316\246-lab" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Jamila Mifdal" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 30 } } } rows { quad { s_iri { prefix_id: 12 name_id: 47 } p_iri { prefix_id: 15 name_id: 31 } o_literal { lex: "European Space Agency \316\246-lab" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Raquel Carmo" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 30 } } } rows { prefix { id: 4 value: "https://w3id.org/np/RAO3Siv0rUDabjaUTr6NKjXY4s35CjPCK-WzZgr_N3UMM/" } } rows { name { id: 39 value: "assertion" } } rows { prefix { id: 11 value: "http://www.w3.org/ns/prov#" } } rows { name { value: "wasDerivedFrom" } } rows { prefix { id: 8 value: "https://api.rohub.org/api/ros/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/crate/download/" } } rows { name { value: "provenance" } } rows { quad { s_iri { prefix_id: 4 name_id: 39 } p_iri { prefix_id: 11 } o_iri { prefix_id: 8 name_id: 105 } g_iri { prefix_id: 4 name_id: 41 } } } rows { prefix { id: 16 value: "https://w3id.org/np/" } } rows { name { value: "RAO3Siv0rUDabjaUTr6NKjXY4s35CjPCK-WzZgr_N3UMM" } } rows { prefix { id: 1 value: "http://purl.org/dc/terms/" } } rows { name { value: "created" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#dateTime" } } rows { name { id: 12 value: "pubinfo" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 1 } o_literal { lex: "2025-11-11T16:12:36.517+01:00" datatype: 2 } g_iri { prefix_id: 4 name_id: 12 } } } rows { prefix { id: 9 value: "http://purl.org/nanopub/x/" } } rows { name { id: 16 value: "introduces" } } rows { prefix { id: 7 value: "https://w3id.org/ro-id/1332a0b9-94f4-4f2c-a4dc-d52e99e1d61a/" } } rows { quad { p_iri { prefix_id: 9 name_id: 16 } o_iri { prefix_id: 7 name_id: 2 } } } rows { name { value: "RoCrateNanopub" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 17 } } } rows { prefix { id: 10 value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { name { id: 48 value: "label" } } rows { quad { p_iri { prefix_id: 10 name_id: 48 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" } } } rows { name { id: 24 value: "sig" } } rows { name { id: 33 value: "hasAlgorithm" } } rows { quad { s_iri { prefix_id: 4 name_id: 24 } p_iri { prefix_id: 9 name_id: 33 } o_literal { lex: "RSA" } } } rows { name { value: "hasPublicKey" } } rows { quad { p_iri { } o_literal { lex: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB" } } } rows { name { value: "hasSignature" } } rows { quad { p_iri { } o_literal { lex: "P8TqUNe84xp0cJVC4TAty3iDMu0oMBUxu0DPYC+35SJV27efxfLSPPtTIlJYRFzLfcM8pwAFP/IdnTi3y/j9knFM/RtKfaII4hw9gg0fXXwdB2N1sJqGPBepug3M8spIzlxWtKTgqnsJoGaqeLLxykrOfdy13xkMM00ovqH2uxsPOSknVXHx4nvRggx3T3jg41mVc2wzj8PbxWnNweM9vKV6+gwsIiFM8xMniFSzsBhGswAG6t5SkNHynixdOmepzaiTzAN09jdAyFjI8DMT+UelTnj0slv4BrB1EF1a/erV/AM95GmPPycxoGB3OTDCkjYbiw99rk0XWvNQnLjmjg==" } } } rows { name { id: 51 value: "hasSignatureTarget" } } rows { quad { p_iri { name_id: 51 } o_iri { prefix_id: 16 name_id: 42 } } } rows { name { id: 53 value: "signedBy" } } rows { prefix { id: 14 value: "https://w3id.org/kpxl/gen/terms/" } } rows { name { id: 58 value: "RoCrateBot" } } rows { quad { p_iri { prefix_id: 9 name_id: 53 } o_iri { prefix_id: 14 name_id: 58 } } }