rows { options { physical_type: PHYSICAL_STREAM_TYPE_QUADS max_name_table_size: 128 max_prefix_table_size: 16 max_datatype_table_size: 16 logical_type: LOGICAL_STREAM_TYPE_DATASETS version: 2 } } rows { prefix { value: "https://w3id.org/np/" } } rows { name { value: "RAQ5_kITmUvMKamjId8z4xBehoZL-cUR-CcaJ92qqQFGI" } } rows { namespace { name: "this" value { prefix_id: 1 } } } rows { prefix { value: "https://w3id.org/np/RAQ5_kITmUvMKamjId8z4xBehoZL-cUR-CcaJ92qqQFGI/" } } rows { name { } } rows { namespace { name: "sub" value { prefix_id: 2 } } } rows { prefix { value: "http://www.nanopub.org/nschema#" } } rows { namespace { name: "np" value { prefix_id: 3 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { namespace { name: "dct" value { prefix_id: 4 name_id: 2 } } } rows { prefix { value: "http://purl.org/pav/" } } rows { namespace { name: "pav" value { prefix_id: 5 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/1999/02/22-rdf-syntax-ns#" } } rows { namespace { name: "rdf" value { prefix_id: 6 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2002/07/owl#" } } rows { namespace { name: "owl" value { prefix_id: 7 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2004/03/trix/rdfg-1/" } } rows { namespace { name: "rdfg" value { prefix_id: 8 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/elements/1.1/" } } rows { namespace { name: "dce" value { prefix_id: 9 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2001/XMLSchema#" } } rows { namespace { name: "xsd" value { prefix_id: 10 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { namespace { name: "rdfs" value { prefix_id: 11 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/ns/prov#" } } rows { namespace { name: "prov" value { prefix_id: 12 name_id: 2 } } } rows { prefix { value: "http://purl.org/nanopub/x/" } } rows { namespace { name: "npx" value { prefix_id: 13 name_id: 2 } } } rows { name { value: "hasAssertion" } } rows { name { value: "assertion" } } rows { name { value: "Head" } } rows { quad { s_iri { prefix_id: 1 name_id: 1 } p_iri { prefix_id: 3 name_id: 3 } o_iri { prefix_id: 2 } g_iri { } } } rows { name { value: "hasProvenance" } } rows { name { value: "provenance" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "hasPublicationInfo" } } rows { name { value: "pubinfo" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "type" } } rows { name { value: "Nanopublication" } } rows { quad { p_iri { prefix_id: 6 } o_iri { prefix_id: 3 } } } rows { prefix { value: "http://eurovoc.europa.eu/" } } rows { name { value: "2919" } } rows { prefix { value: "http://schema.org/" } } rows { name { value: "description" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 } o_literal { } g_iri { prefix_id: 2 name_id: 4 } } } rows { name { value: "name" } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental research" } } } rows { name { value: "DefinedTerm" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "6384" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Climatology" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { prefix { value: "https://w3id.org/ro-id/" } } rows { name { value: "022f7b56-b429-48c5-9aa3-94c62a35706b" } } rows { quad { s_iri { prefix_id: 16 name_id: 17 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Literature" } } } rows { prefix { id: 4 value: "https://w3id.org/ro/terms/earth-science#" } } rows { name { value: "IPTC" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 18 } } } rows { name { value: "path" } } rows { quad { p_iri { } o_literal { lex: "Arts, culture and entertainment/Arts and entertainment/Literature" } } } rows { name { value: "047a55c3-fcc1-480b-9d58-ba9f6c664736" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "IceNet" } } } rows { name { value: "Lemma" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 21 } } } rows { name { value: "normScore" } } rows { quad { p_iri { } o_literal { lex: "16.989567809239944" } } } rows { name { value: "score" } } rows { quad { p_iri { } o_literal { lex: "11.4" } } } rows { name { value: "048c822d-d613-4a27-8aee-0cbfce81a867" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Language" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 18 } } } rows { quad { p_iri { } o_literal { lex: "Arts, culture and entertainment/Culture/Language" } } } rows { name { value: "11c087e7-225f-472d-9b35-24d7c8ff41f7" } } rows { quad { s_iri { prefix_id: 16 name_id: 25 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Book industry" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 18 } } } rows { quad { p_iri { } o_literal { lex: "Economy, business and finance/Economic sector/Media/Book industry" } } } rows { name { value: "130e2cf3-9811-483f-940c-277217c937d8" } } rows { quad { s_iri { prefix_id: 16 name_id: 26 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "JupyterCon2023" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "11.624441132637855" } } } rows { quad { p_iri { } o_literal { lex: "7.8" } } } rows { name { value: "1564d8b4-ba54-485d-bc12-c5911d878d10" } } rows { quad { s_iri { prefix_id: 16 name_id: 27 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { name { value: "Concept" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "12.959719789842381" } } } rows { quad { p_iri { } o_literal { lex: "7.4" } } } rows { name { value: "1a9bdc9d-1d6a-4f6b-844c-dc7d8882bb75" } } rows { quad { s_iri { prefix_id: 16 name_id: 29 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "15.7973174366617" } } } rows { quad { p_iri { } o_literal { lex: "10.6" } } } rows { prefix { value: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/#" } } rows { name { value: "enrichment_service-account-enrichment" } } rows { quad { s_iri { prefix_id: 5 name_id: 30 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "service-account-enrichment" } } } rows { prefix { id: 7 value: "http://xmlns.com/foaf/0.1/" } } rows { name { value: "Agent" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 31 } } } rows { prefix { value: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/" } } rows { prefix { value: "http://purl.org/wf4ever/roevo#" } } rows { name { value: "forkedAtTime" } } rows { quad { s_iri { prefix_id: 8 name_id: 2 } p_iri { prefix_id: 9 name_id: 32 } o_literal { lex: "2023-05-12 13:23:32.549839+00:00" } } } rows { name { value: "forkedBy" } } rows { quad { p_iri { } o_literal { lex: "https://orcid.org/0000-0002-1784-2920" } } } rows { name { value: "about" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 14 name_id: 12 } } } rows { quad { o_iri { name_id: 16 } } } rows { name { value: "author" } } rows { prefix { value: "mailto:https://github.com/" } } rows { name { value: "acocac" } } rows { quad { p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 10 } } } rows { name { value: "contentSize" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#integer" } } rows { quad { p_iri { prefix_id: 15 } o_literal { lex: "372203" datatype: 1 } } } rows { name { value: "contentUrl" } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/ros/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/crate/download/" } } } rows { name { value: "contributor" } } rows { name { value: "nbarlowATI" } } rows { quad { p_iri { } o_iri { prefix_id: 10 } } } rows { name { value: "tom-andersson" } } rows { quad { o_iri { } } } rows { name { value: "copyrightHolder" } } rows { prefix { } } rows { name { value: "mailto:environmental.ds.book@gmail.com" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 11 } } } rows { name { value: "creator" } } rows { quad { p_iri { prefix_id: 15 } } } rows { name { value: "dateCreated" } } rows { quad { p_iri { } o_literal { lex: "2022-04-03 22:37:45.977506+00:00" } } } rows { name { value: "dateModified" } } rows { quad { p_iri { } o_literal { lex: "2025-03-05 01:21:28.357635+00:00" } } } rows { name { value: "datePublished" } } rows { quad { p_iri { } o_literal { lex: "2022-04-03 22:37:45.977506+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book." } } } rows { name { value: "encodingFormat" } } rows { quad { p_iri { name_id: 48 } o_literal { lex: "application/ld+json" } } } rows { name { value: "hasPart" } } rows { prefix { value: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/folders/" } } rows { name { value: "1c07fde0-2f53-4222-8c42-d16ce6ecc3b1" } } rows { quad { p_iri { } o_iri { prefix_id: 12 } } } rows { name { value: "8b0cacd6-e289-432e-8020-29e8e1ae3658" } } rows { quad { o_iri { } } } rows { name { value: "9ce28e0d-5b7f-47ec-8bae-b41d12e49ed6" } } rows { quad { o_iri { } } } rows { name { value: "b1d8ebc4-3b09-403f-9a8d-e185ea8cada9" } } rows { quad { o_iri { } } } rows { name { value: "identifier" } } rows { quad { p_iri { prefix_id: 15 } o_literal { lex: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8" } } } rows { name { value: "keywords" } } rows { quad { p_iri { } o_literal { lex: "Environmental Science" } } } rows { name { value: "license" } } rows { prefix { value: "https://choosealicense.com/no-permission/" } } rows { quad { p_iri { } o_iri { prefix_id: 13 name_id: 2 } } } rows { name { value: "mainEntity" } } rows { quad { p_iri { prefix_id: 15 name_id: 57 } o_literal { lex: "Jupyter Notebook" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book - fork" } } } rows { quad { o_literal { lex: "Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book JupyterCon2023" } } } rows { name { value: "publisher" } } rows { quad { p_iri { name_id: 58 } o_iri { prefix_id: 11 name_id: 43 } } } rows { prefix { id: 1 value: "http://w3id.org/ro-id/rohub/model#" } } rows { name { value: "community" } } rows { name { value: "379a4687-de50-44c7-b7bd-37125ebd4ff7" } } rows { quad { p_iri { prefix_id: 1 name_id: 59 } o_iri { prefix_id: 8 } } } rows { name { value: "creation_mode" } } rows { quad { p_iri { prefix_id: 1 } o_literal { lex: "MANUAL" } } } rows { prefix { id: 3 value: "http://purl.org/wf4ever/ro#" } } rows { name { value: "ResearchObject" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 62 } } } rows { name { value: "ForkedRO" } } rows { quad { o_iri { prefix_id: 9 } } } rows { name { value: "LiveRO" } } rows { quad { o_iri { } } } rows { name { value: "Dataset" } } rows { quad { o_iri { prefix_id: 15 } } } rows { prefix { id: 2 value: "http://w3id.org/ro/" } } rows { name { value: "earth-scienceExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 2 } } } rows { name { value: "ExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 4 } } } rows { prefix { id: 16 value: "http://www.w3.org/ns/prov#" } } rows { name { value: "wasDerivedFrom" } } rows { quad { p_iri { prefix_id: 16 } o_literal { lex: "https://w3id.org/ro-id/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef" } } } rows { prefix { id: 5 value: "https://w3id.org/contentdesc#" } } rows { name { value: "Domain" } } rows { quad { p_iri { prefix_id: 5 } o_literal { lex: "https://w3id.org/ro-id/50e426ae-fc1a-41d5-a76d-58b254acd04e" } } } rows { quad { p_iri { prefix_id: 4 name_id: 28 } o_literal { lex: "https://w3id.org/ro-id/1564d8b4-ba54-485d-bc12-c5911d878d10" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/306bded1-959e-41f6-8e8f-09f1f3628c39" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/39f28449-d6d9-472f-a105-03757f7f7e59" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/b0dab925-8e1d-4633-88ef-325c23b21fcd" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/cc0dcbca-3242-423e-bb30-716afd7d759f" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/d5e28f33-4434-449e-88bb-751e1d31b2ff" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/dcada9d1-2eb7-469b-ae5e-e74c64d64062" } } } rows { name { value: "FieldOfResearch" } } rows { quad { p_iri { name_id: 70 } o_literal { lex: "https://w3id.org/ro-id/3bf4e260-3dc1-4349-b3df-ea131b5422e3" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/ad81cb53-bfec-4f47-9f5b-2f1e38e3f386" } } } rows { quad { p_iri { name_id: 18 } o_literal { lex: "https://w3id.org/ro-id/022f7b56-b429-48c5-9aa3-94c62a35706b" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/048c822d-d613-4a27-8aee-0cbfce81a867" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/11c087e7-225f-472d-9b35-24d7c8ff41f7" } } } rows { quad { p_iri { name_id: 21 } o_literal { lex: "https://w3id.org/ro-id/047a55c3-fcc1-480b-9d58-ba9f6c664736" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/130e2cf3-9811-483f-940c-277217c937d8" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/1a9bdc9d-1d6a-4f6b-844c-dc7d8882bb75" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/5b20d49b-5386-4a7d-92c7-2ef1fe13700e" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/6d411709-b64a-4ba1-a29f-2994179980a5" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/8aea154f-52e3-4ebd-b8af-704400a40b73" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/e9faf054-c3b6-4ee4-a112-9252743d8851" } } } rows { name { value: "NASA" } } rows { quad { p_iri { name_id: 71 } o_literal { lex: "https://w3id.org/ro-id/e6137b80-9ef1-458a-96a4-791954ea4106" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/f383b2fa-cca1-4acc-81e2-9da64055b0af" } } } rows { name { value: "Phrase" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/43ffa2fc-184f-4bc8-985d-95415832a1c2" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/5e2b825f-3b34-4b1b-af72-97a7bd963020" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/82b9333a-159d-42e8-993f-a705478f37f2" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/9c344f8b-b53d-40ba-a398-91200ee2b9ab" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/e4776bcc-990b-43bd-9b30-d3a5669bfe61" } } } rows { name { value: "Sentence" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/1d1faf2c-7bde-4dcc-886e-b1cfa112850d" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/9940dcca-21f0-4c7e-bdba-a135bf8fdcbd" } } } rows { prefix { id: 7 value: "https://www.w3.org/ns/iana/link-relations/relation#" } } rows { name { value: "cite-as" } } rows { quad { p_iri { prefix_id: 7 } o_literal { lex: "Alejandro Coca-Castro, Tom Andersson, and Nick Barlow. \"Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book JupyterCon2023.\" ROHub. Apr 03 ,2022. https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8." } } } rows { quad { s_iri { prefix_id: 8 name_id: 60 } p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 59 } } } rows { prefix { id: 14 value: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/resources/" } } rows { name { value: "8a99ffd1-faa4-4e15-9dd5-908551341d99" } } rows { quad { s_iri { prefix_id: 12 name_id: 50 } p_iri { prefix_id: 15 name_id: 49 } o_iri { prefix_id: 14 name_id: 75 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "biblio" } } } rows { prefix { id: 10 value: "http://purl.org/wf4ever/wf4ever#" } } rows { name { value: "Folder" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 76 } } } rows { quad { o_iri { prefix_id: 15 name_id: 65 } } } rows { name { value: "7a1dc762-dcb5-4176-89c9-839be2492364" } } rows { quad { s_iri { prefix_id: 12 name_id: 51 } p_iri { prefix_id: 15 name_id: 49 } o_iri { prefix_id: 14 name_id: 77 } } } rows { name { value: "7e3f0ae3-42fc-4154-b856-7aeed859e211" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "output" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 76 } } } rows { quad { o_iri { prefix_id: 15 name_id: 65 } } } rows { name { value: "0b538afb-ef06-4b1f-9f19-a7f4c0b927ca" } } rows { quad { s_iri { prefix_id: 12 name_id: 52 } p_iri { prefix_id: 15 name_id: 49 } o_iri { prefix_id: 14 name_id: 79 } } } rows { name { value: "770d97b4-b101-4af4-95d9-c94b72e16c1a" } } rows { quad { o_iri { } } } rows { name { value: "77485763-376b-4b2e-be69-4b0a7094d718" } } rows { quad { o_iri { } } } rows { name { value: "b574c292-7294-4e31-9247-1092bdbe2de4" } } rows { quad { o_iri { } } } rows { name { value: "e458161e-0fdc-4b9d-be31-8fa388ba409c" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "tool" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 76 } } } rows { quad { o_iri { prefix_id: 15 name_id: 65 } } } rows { name { value: "780441ef-e2fc-4b9d-968a-e6878460a7e1" } } rows { quad { s_iri { prefix_id: 12 name_id: 53 } p_iri { prefix_id: 15 name_id: 49 } o_iri { prefix_id: 14 name_id: 84 } } } rows { name { value: "c9e0d4d8-8ea3-40bb-a655-29d06c09f9b2" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "input" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 76 } } } rows { quad { o_iri { prefix_id: 15 name_id: 65 } } } rows { quad { s_iri { prefix_id: 14 name_id: 79 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://github.com/eds-book-gallery/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef/blob/main/.lock/conda-linux-64.lock" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:32.938456+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:12.880942+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for linux-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for linux-64" } } } rows { name { value: "sdDatePublished" } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:32.938456+00:00" } } } rows { name { value: "Resource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 87 } } } rows { name { value: "MediaObject" } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 80 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://raw.githubusercontent.com/eds-book-gallery/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef/main/notebook.ipynb" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:13.405158+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:31.136606+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Jupyter notebook" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:13.405158+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "earth-scienceJupyterNotebook" } } rows { quad { o_iri { prefix_id: 2 } } } rows { prefix { id: 3 value: "https://schema.org/" } } rows { name { value: "softwareRequirements" } } rows { quad { p_iri { prefix_id: 3 } o_literal { lex: "https://w3id.org/ro-id/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/resources/579fe096-4af8-4203-8260-feaf7677c30a" } } } rows { quad { s_iri { prefix_id: 14 name_id: 81 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://raw.githubusercontent.com/Environmental-DS-Book/polar-modelling-icenet/main/.binder/environment.yml" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:36.253117+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:19.136126+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Conda environment when user want to have the same libraries installed without concerns of package versions" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Conda environment" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:36.253117+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 84 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://doi.org/10.5285/71820e7d-c628-4e32-969f-464b7efb187c" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:14.669821+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:09.571914+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains input Forecasts, neural networks, and results from the paper: \'Seasonal Arctic sea ice forecasting with probabilistic deep learning\' used in the Jupyter notebook of Sea ice forecasting using IceNet" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Input Forecasts, neural networks, and results from the paper: \'Seasonal Arctic sea ice forecasting with probabilistic deep learning\'" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:14.669821+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 65 } } } rows { quad { o_iri { name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 77 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://doi.org/10.5281/zenodo.6410246" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:17.386248+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:18.568513+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains outputs, (table and figures), generated in the Jupyter notebook of Sea ice forecasting using IceNet" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Outputs" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:17.386248+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 65 } } } rows { quad { o_iri { name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 78 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 37 } o_literal { lex: "344731" datatype: 1 } } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/resources/7e3f0ae3-42fc-4154-b856-7aeed859e211/download/" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:08.092594+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:18.169631+00:00" } } } rows { quad { p_iri { name_id: 48 } o_literal { lex: "image/png" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Image showing interactive plot of IceNet seasonal forecasts of Artic sea ice according to four lead times and months in 2020" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:08.092594+00:00" } } } rows { prefix { id: 9 value: "http://purl.org/wf4ever/roterms#" } } rows { name { value: "Sketch" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 91 } } } rows { quad { o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 75 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://doi.org/10.1038/s41467-021-25257-4" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:18.897063+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:13.755021+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Related publication of the modelling presented in the Jupyter notebook" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Seasonal Arctic sea ice forecasting with probabilistic deep learning" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:18.897063+00:00" } } } rows { prefix { id: 16 value: "http://purl.org/dc/terms/" } } rows { name { value: "BibliographicResource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 16 name_id: 92 } } } rows { quad { o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 82 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://github.com/eds-book-gallery/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef/blob/main/.lock/conda-osx-64.lock" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:34.714518+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:31.756667+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for osx-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for osx-64" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:34.714518+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 85 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://doi.org/10.5281/zenodo.5516869" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:16.031702+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:14.459856+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains input Dataset for IceNet\'s demo notebook used in the Jupyter notebook of Sea ice forecasting using IceNet" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Input Dataset for IceNet\'s demo notebook" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:16.031702+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 65 } } } rows { quad { o_iri { name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 14 name_id: 83 } p_iri { prefix_id: 15 name_id: 35 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 38 } o_literal { lex: "https://edsbook.org/notebooks/gallery/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef/notebook.html" } } } rows { quad { p_iri { name_id: 44 } o_iri { prefix_id: 11 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 45 } o_literal { lex: "2022-04-03 22:38:31.388108+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-05-12 13:23:19.653895+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 48 } o_literal { lex: "text/html" } } } rows { quad { p_iri { name_id: 56 } o_iri { prefix_id: 13 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Online rendered version of the Jupyter notebook" } } } rows { quad { p_iri { name_id: 86 } o_literal { lex: "2022-04-03 22:38:31.388108+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 87 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "publication" } } rows { quad { o_iri { name_id: 93 } } } rows { name { value: "ro-crate-metadata.json" } } rows { name { value: "conformsTo" } } rows { prefix { id: 5 value: "https://w3id.org/ro/crate/" } } rows { name { value: "1.1" } } rows { quad { s_iri { prefix_id: 8 } p_iri { prefix_id: 16 } o_iri { prefix_id: 5 } } } rows { quad { p_iri { prefix_id: 15 name_id: 34 } o_iri { prefix_id: 8 name_id: 2 } } } rows { name { value: "CreativeWork" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 97 } } } rows { prefix { id: 4 value: "https://w3id.org/ro-id/" } } rows { name { value: "1d1faf2c-7bde-4dcc-886e-b1cfa112850d" } } rows { quad { s_iri { prefix_id: 4 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book JupyterCon2023." } } } rows { prefix { id: 7 value: "https://w3id.org/ro/terms/earth-science#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 73 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "43.94394394394394" } } } rows { quad { p_iri { } o_literal { lex: "43.9" } } } rows { name { value: "306bded1-959e-41f6-8e8f-09f1f3628c39" } } rows { quad { s_iri { prefix_id: 4 name_id: 99 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "ice" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "12.609457092819614" } } } rows { quad { p_iri { } o_literal { lex: "7.2" } } } rows { name { value: "39f28449-d6d9-472f-a105-03757f7f7e59" } } rows { quad { s_iri { prefix_id: 4 name_id: 100 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "15.236427320490366" } } } rows { quad { p_iri { } o_literal { lex: "8.7" } } } rows { name { value: "3bf4e260-3dc1-4349-b3df-ea131b5422e3" } } rows { quad { s_iri { prefix_id: 4 name_id: 101 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "physical geography and environmental geoscience" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 70 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.9742836952209473" } } } rows { name { value: "43ffa2fc-184f-4bc8-985d-95415832a1c2" } } rows { quad { s_iri { prefix_id: 4 name_id: 102 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "sea ice forecasting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 72 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "28.927410617551462" } } } rows { quad { p_iri { } o_literal { lex: "26.7" } } } rows { name { value: "50e426ae-fc1a-41d5-a76d-58b254acd04e" } } rows { quad { s_iri { prefix_id: 4 name_id: 103 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "publishing" } } } rows { prefix { id: 1 value: "https://w3id.org/contentdesc#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 1 name_id: 69 } } } rows { quad { p_iri { prefix_id: 7 name_id: 22 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "5.8" } } } rows { name { value: "5b20d49b-5386-4a7d-92c7-2ef1fe13700e" } } rows { quad { s_iri { prefix_id: 4 name_id: 104 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "12.965722801788376" } } } rows { quad { p_iri { } o_literal { lex: "8.7" } } } rows { name { value: "5e2b825f-3b34-4b1b-af72-97a7bd963020" } } rows { quad { s_iri { prefix_id: 4 name_id: 105 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Jupyter Notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 72 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "6.2838569880823405" } } } rows { quad { p_iri { } o_literal { lex: "5.8" } } } rows { name { value: "6d411709-b64a-4ba1-a29f-2994179980a5" } } rows { quad { s_iri { prefix_id: 4 name_id: 106 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "forecasting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "19.374068554396423" } } } rows { quad { p_iri { } o_literal { lex: "13.0" } } } rows { name { value: "82b9333a-159d-42e8-993f-a705478f37f2" } } rows { quad { s_iri { prefix_id: 4 name_id: 107 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 72 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "25.785482123510292" } } } rows { quad { p_iri { } o_literal { lex: "23.8" } } } rows { name { value: "8aea154f-52e3-4ebd-b8af-704400a40b73" } } rows { quad { s_iri { prefix_id: 4 name_id: 108 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "12.220566318926974" } } } rows { quad { p_iri { } o_literal { lex: "8.2" } } } rows { name { value: "9940dcca-21f0-4c7e-bdba-a135bf8fdcbd" } } rows { quad { s_iri { prefix_id: 4 name_id: 109 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book." } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 73 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "56.05605605605605" } } } rows { quad { p_iri { } o_literal { lex: "56.0" } } } rows { name { value: "9c344f8b-b53d-40ba-a398-91200ee2b9ab" } } rows { quad { s_iri { prefix_id: 4 name_id: 110 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 72 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "11.375947995666305" } } } rows { quad { p_iri { } o_literal { lex: "10.5" } } } rows { name { value: "ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef" } } rows { prefix { id: 12 value: "http://purl.org/wf4ever/ro#" } } rows { quad { s_iri { prefix_id: 4 name_id: 111 } p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 62 } } } rows { name { value: "ad81cb53-bfec-4f47-9f5b-2f1e38e3f386" } } rows { quad { s_iri { prefix_id: 4 name_id: 112 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "earth sciences" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 70 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.9742836952209473" } } } rows { name { value: "b0dab925-8e1d-4633-88ef-325c23b21fcd" } } rows { quad { s_iri { prefix_id: 4 name_id: 113 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "14.711033274956216" } } } rows { quad { p_iri { } o_literal { lex: "8.4" } } } rows { name { value: "cc0dcbca-3242-423e-bb30-716afd7d759f" } } rows { quad { s_iri { prefix_id: 4 name_id: 114 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "aim" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "11.733800350262698" } } } rows { quad { p_iri { } o_literal { lex: "6.7" } } } rows { name { value: "d5e28f33-4434-449e-88bb-751e1d31b2ff" } } rows { quad { s_iri { prefix_id: 4 name_id: 115 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "forecast" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "22.591943957968475" } } } rows { quad { p_iri { } o_literal { lex: "12.9" } } } rows { name { value: "dcada9d1-2eb7-469b-ae5e-e74c64d64062" } } rows { quad { s_iri { prefix_id: 4 name_id: 116 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "sea ice" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 28 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "10.157618213660244" } } } rows { quad { p_iri { } o_literal { lex: "5.8" } } } rows { name { value: "e4776bcc-990b-43bd-9b30-d3a5669bfe61" } } rows { quad { s_iri { prefix_id: 4 name_id: 117 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "IceNet notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 72 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "27.6273022751896" } } } rows { quad { p_iri { } o_literal { lex: "25.5" } } } rows { name { value: "e6137b80-9ef1-458a-96a4-791954ea4106" } } rows { quad { s_iri { prefix_id: 4 name_id: 118 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "geosciences" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 71 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.392853319644928" } } } rows { name { value: "e9faf054-c3b6-4ee4-a112-9252743d8851" } } rows { quad { s_iri { prefix_id: 4 name_id: 119 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 21 } } } rows { quad { p_iri { } o_literal { lex: "11.028315946348734" } } } rows { quad { p_iri { } o_literal { lex: "7.4" } } } rows { name { value: "f383b2fa-cca1-4acc-81e2-9da64055b0af" } } rows { quad { s_iri { prefix_id: 4 name_id: 120 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "oceanography" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 71 } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.392853319644928" } } } rows { name { value: "email" } } rows { quad { s_iri { prefix_id: 11 name_id: 43 } p_iri { prefix_id: 15 name_id: 121 } o_literal { lex: "environmental.ds.book@gmail.com" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Environmental Data Science Book Community" } } } rows { name { value: "Person" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 122 } } } rows { prefix { id: 2 value: "http://xmlns.com/foaf/0.1/" } } rows { quad { o_iri { prefix_id: 2 name_id: 31 } } } rows { prefix { value: "mailto:https://github.com/" } } rows { name { value: "affiliation" } } rows { quad { s_iri { prefix_id: 3 name_id: 36 } p_iri { prefix_id: 15 name_id: 123 } o_literal { lex: "The Alan Turing Institute" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Alejandro Coca-Castro" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 2 name_id: 31 } } } rows { quad { s_iri { prefix_id: 3 name_id: 40 } p_iri { prefix_id: 15 name_id: 123 } o_literal { lex: "The Alan Turing Institute" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Nick Barlow" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 2 name_id: 31 } } } rows { quad { s_iri { prefix_id: 3 name_id: 41 } p_iri { prefix_id: 15 name_id: 123 } o_literal { lex: "he British Antarctic Survey" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Tom Andersson" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 2 name_id: 31 } } } rows { prefix { id: 9 value: "https://w3id.org/np/RAQ5_kITmUvMKamjId8z4xBehoZL-cUR-CcaJ92qqQFGI/" } } rows { prefix { id: 14 value: "http://www.w3.org/ns/prov#" } } rows { prefix { id: 13 value: "https://api.rohub.org/api/ros/1b8f1898-7ae4-4847-aeb3-3519a062d0c8/crate/download/" } } rows { quad { s_iri { prefix_id: 9 name_id: 4 } p_iri { prefix_id: 14 name_id: 68 } o_iri { prefix_id: 13 name_id: 94 } g_iri { prefix_id: 9 name_id: 7 } } } rows { prefix { id: 10 value: "https://w3id.org/np/" } } rows { name { value: "created" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#dateTime" } } rows { quad { s_iri { prefix_id: 10 name_id: 1 } p_iri { prefix_id: 16 name_id: 124 } o_literal { lex: "2025-11-11T16:10:05.305+01:00" datatype: 2 } g_iri { prefix_id: 9 name_id: 9 } } } rows { prefix { id: 5 value: "http://purl.org/nanopub/x/" } } rows { name { value: "introduces" } } rows { quad { p_iri { prefix_id: 5 name_id: 125 } o_iri { prefix_id: 8 name_id: 2 } } } rows { name { value: "RoCrateNanopub" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 126 } } } rows { prefix { id: 1 value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { name { value: "label" } } rows { quad { p_iri { prefix_id: 1 } o_literal { lex: "Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book JupyterCon2023" } } } rows { name { value: "sig" } } rows { name { id: 3 value: "hasAlgorithm" } } rows { quad { s_iri { prefix_id: 9 } p_iri { prefix_id: 5 name_id: 3 } o_literal { lex: "RSA" } } } rows { name { id: 5 value: "hasPublicKey" } } rows { quad { p_iri { name_id: 5 } o_literal { lex: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB" } } } rows { name { value: "hasSignature" } } rows { quad { p_iri { } o_literal { lex: "HvaYyqVEZABzWSsDb8pD+RMpEwjm3zPwHB4UXFPruWDaiNoXEowB+UFmNCcKA03AezKVgcL+VNoACXNGHVuboEitDevvJZjmsXJLOAF90oHn3vlgTo6y9YZSZEl9dgUyIilXWpK76Rz/XB2/sFVosssLNI+ZdoVKeAc+TdAdFPoTx4x1Sj+AKhh9jwEgHUYV/SiopJzvG0y8EUfHklKishkEKfYbQwxoYsz0vPyG/kpw8A0+tZonC7maRR6Z2dG4hf0u+0TzzQvCstULhhIqAGFwOo6fkkOjDlCPnENXZio1F7cIMwekeuJiSRCqTFmIIgaSCqb9JOqL8jstLkBPxA==" } } } rows { name { id: 8 value: "hasSignatureTarget" } } rows { quad { p_iri { name_id: 8 } o_iri { prefix_id: 10 name_id: 1 } } } rows { name { id: 11 value: "signedBy" } } rows { prefix { id: 12 value: "https://w3id.org/kpxl/gen/terms/" } } rows { name { id: 15 value: "RoCrateBot" } } rows { quad { p_iri { prefix_id: 5 name_id: 11 } o_iri { prefix_id: 12 name_id: 15 } } }