rows { options { physical_type: PHYSICAL_STREAM_TYPE_QUADS max_name_table_size: 128 max_prefix_table_size: 16 max_datatype_table_size: 16 logical_type: LOGICAL_STREAM_TYPE_DATASETS version: 2 } } rows { prefix { value: "https://w3id.org/np/" } } rows { name { value: "RA_d7DDPSEvJHrBwlwoYNhvsYYPLJDv59hv36tJMHew2A" } } rows { namespace { name: "this" value { prefix_id: 1 } } } rows { prefix { value: "https://w3id.org/np/RA_d7DDPSEvJHrBwlwoYNhvsYYPLJDv59hv36tJMHew2A/" } } rows { name { } } rows { namespace { name: "sub" value { prefix_id: 2 } } } rows { prefix { value: "http://www.nanopub.org/nschema#" } } rows { namespace { name: "np" value { prefix_id: 3 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { namespace { name: "dct" value { prefix_id: 4 name_id: 2 } } } rows { prefix { value: "http://purl.org/pav/" } } rows { namespace { name: "pav" value { prefix_id: 5 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/1999/02/22-rdf-syntax-ns#" } } rows { namespace { name: "rdf" value { prefix_id: 6 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2002/07/owl#" } } rows { namespace { name: "owl" value { prefix_id: 7 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2004/03/trix/rdfg-1/" } } rows { namespace { name: "rdfg" value { prefix_id: 8 name_id: 2 } } } rows { prefix { value: "http://purl.org/dc/elements/1.1/" } } rows { namespace { name: "dce" value { prefix_id: 9 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2001/XMLSchema#" } } rows { namespace { name: "xsd" value { prefix_id: 10 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { namespace { name: "rdfs" value { prefix_id: 11 name_id: 2 } } } rows { prefix { value: "http://www.w3.org/ns/prov#" } } rows { namespace { name: "prov" value { prefix_id: 12 name_id: 2 } } } rows { prefix { value: "http://purl.org/nanopub/x/" } } rows { namespace { name: "npx" value { prefix_id: 13 name_id: 2 } } } rows { name { value: "hasAssertion" } } rows { name { value: "assertion" } } rows { name { value: "Head" } } rows { quad { s_iri { prefix_id: 1 name_id: 1 } p_iri { prefix_id: 3 name_id: 3 } o_iri { prefix_id: 2 } g_iri { } } } rows { name { value: "hasProvenance" } } rows { name { value: "provenance" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "hasPublicationInfo" } } rows { name { value: "pubinfo" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 2 } } } rows { name { value: "type" } } rows { name { value: "Nanopublication" } } rows { quad { p_iri { prefix_id: 6 } o_iri { prefix_id: 3 } } } rows { prefix { value: "http://eurovoc.europa.eu/" } } rows { name { value: "2114" } } rows { prefix { value: "http://schema.org/" } } rows { name { value: "description" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 } o_literal { } g_iri { prefix_id: 2 name_id: 4 } } } rows { name { value: "name" } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Oceanography" } } } rows { name { value: "DefinedTerm" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "2919" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Environmental research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { name { value: "c_a935cf3f" } } rows { quad { s_iri { prefix_id: 14 name_id: 17 } p_iri { prefix_id: 15 name_id: 13 } o_literal { } } } rows { quad { p_iri { } o_literal { lex: "Earth observation" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 15 } } } rows { prefix { value: "https://w3id.org/ro-id/" } } rows { name { value: "0e3d9282-04db-4463-8fb3-591727faf80d" } } rows { quad { s_iri { prefix_id: 16 name_id: 18 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Book industry" } } } rows { prefix { id: 4 value: "https://w3id.org/ro/terms/earth-science#" } } rows { name { value: "IPTC" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 19 } } } rows { name { value: "path" } } rows { quad { p_iri { } o_literal { lex: "Economy, business and finance/Economic sector/Media/Book industry" } } } rows { name { value: "131ecbc9-9305-4c2b-b3ca-d71f975cfb0f" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science" } } } rows { name { value: "Lemma" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 22 } } } rows { name { value: "normScore" } } rows { quad { p_iri { } o_literal { lex: "16.02002503128911" } } } rows { name { value: "score" } } rows { quad { p_iri { } o_literal { lex: "12.8" } } } rows { name { value: "152415ea-1d9a-41f9-9984-c673b40c9768" } } rows { quad { s_iri { prefix_id: 16 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { name { value: "Concept" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "12.621359223300972" } } } rows { quad { p_iri { } o_literal { lex: "9.1" } } } rows { name { value: "2190b4f5-d076-45b5-aa45-05078c46dc37" } } rows { quad { s_iri { prefix_id: 16 name_id: 27 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "13.642052565707132" } } } rows { quad { p_iri { } o_literal { lex: "10.9" } } } rows { name { value: "221f0e07-34c9-4290-a4ea-5f0d65495ec4" } } rows { quad { s_iri { prefix_id: 16 name_id: 28 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "book" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "14.147018030513175" } } } rows { quad { p_iri { } o_literal { lex: "10.2" } } } rows { name { value: "26829b0f-b79f-4176-a622-2830ef8917c7" } } rows { quad { s_iri { prefix_id: 16 name_id: 29 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Environmental Data Science book" } } } rows { name { value: "Phrase" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 30 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "15.259409969481181" } } } rows { quad { p_iri { } o_literal { lex: "15.0" } } } rows { name { value: "2b4ddd34-5497-459a-87ad-dfc7dbcc4754" } } rows { quad { s_iri { prefix_id: 16 name_id: 31 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book." } } } rows { name { value: "Sentence" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 4 name_id: 32 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "43.54354354354354" } } } rows { quad { p_iri { } o_literal { lex: "43.5" } } } rows { prefix { value: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/#" } } rows { name { value: "01659a20-74ff-49f2-9073-d437f4858115" } } rows { quad { s_iri { prefix_id: 5 name_id: 33 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { name { value: "polygon" } } rows { quad { p_iri { name_id: 34 } o_literal { lex: "26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471" } } } rows { name { value: "GeoShape" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 35 } } } rows { name { value: "22e7c9e0-7eca-4126-89d7-8422a465e3a5" } } rows { quad { s_iri { prefix_id: 5 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { name_id: 34 } o_literal { lex: "119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 35 } } } rows { name { value: "57cf5fce-77d6-4bd5-aaa2-c328390f4e41" } } rows { name { value: "geo" } } rows { quad { s_iri { prefix_id: 5 name_id: 37 } p_iri { prefix_id: 15 } o_iri { prefix_id: 5 name_id: 33 } } } rows { name { value: "identifier" } } rows { quad { p_iri { prefix_id: 15 name_id: 39 } o_literal { lex: "57cf5fce-77d6-4bd5-aaa2-c328390f4e41" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { name { value: "Place" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 40 } } } rows { name { value: "8815d24d-9098-4f1f-a816-b01aa1349a04" } } rows { quad { s_iri { prefix_id: 5 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { name_id: 34 } o_literal { lex: "-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 35 } } } rows { name { value: "e403e2bc-2fa0-44c7-9120-36e5a9967b7e" } } rows { name { value: "f2a6189b-ff22-4a03-84bb-876bc5d1aa17" } } rows { quad { s_iri { prefix_id: 5 name_id: 42 } p_iri { prefix_id: 15 name_id: 38 } o_iri { prefix_id: 5 name_id: 43 } } } rows { quad { p_iri { prefix_id: 15 name_id: 39 } o_literal { lex: "e403e2bc-2fa0-44c7-9120-36e5a9967b7e" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 40 } } } rows { name { value: "enrichment_service-account-enrichment" } } rows { quad { s_iri { prefix_id: 5 name_id: 44 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "service-account-enrichment" } } } rows { prefix { id: 7 value: "http://xmlns.com/foaf/0.1/" } } rows { name { value: "Agent" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 45 } } } rows { quad { s_iri { prefix_id: 5 name_id: 43 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { quad { p_iri { name_id: 34 } o_literal { lex: "-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 35 } } } rows { name { value: "f35c5d9c-7ef7-4ed0-a56b-3e9c0efcf13f" } } rows { quad { s_iri { prefix_id: 5 name_id: 46 } p_iri { prefix_id: 15 name_id: 38 } o_iri { prefix_id: 5 name_id: 36 } } } rows { quad { p_iri { prefix_id: 15 name_id: 39 } o_literal { lex: "f35c5d9c-7ef7-4ed0-a56b-3e9c0efcf13f" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 40 } } } rows { name { value: "f52396ac-2798-42d4-a6f2-1bc74ae669e3" } } rows { quad { s_iri { prefix_id: 5 name_id: 47 } p_iri { prefix_id: 15 name_id: 38 } o_iri { prefix_id: 5 name_id: 41 } } } rows { quad { p_iri { prefix_id: 15 name_id: 39 } o_literal { lex: "f52396ac-2798-42d4-a6f2-1bc74ae669e3" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 40 } } } rows { prefix { value: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/" } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { name { value: "doi" } } rows { quad { s_iri { prefix_id: 8 name_id: 2 } p_iri { prefix_id: 9 name_id: 48 } o_literal { lex: "https://doi.org/10.24424/g1bk-dv49" } } } rows { prefix { value: "http://purl.org/wf4ever/roevo#" } } rows { name { value: "isFinalized" } } rows { quad { p_iri { prefix_id: 10 } o_literal { lex: "False" } } } rows { name { value: "isSnapshotOf" } } rows { quad { p_iri { } o_literal { lex: "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a9" } } } rows { name { value: "snapshotedAtTime" } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:43.973361+00:00" } } } rows { name { value: "snapshotedBy" } } rows { quad { p_iri { } o_literal { lex: "mailto:environmental.ds.book@gmail.com" } } } rows { name { value: "about" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 14 name_id: 12 } } } rows { quad { o_iri { name_id: 16 } } } rows { quad { o_iri { } } } rows { name { value: "author" } } rows { prefix { value: "mailto:https://orcid.org/" } } rows { name { value: "0000-0002-9480-7387" } } rows { quad { p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 11 } } } rows { name { value: "0000-0003-0808-3480" } } rows { quad { o_iri { } } } rows { name { value: "contentLocation" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 5 name_id: 37 } } } rows { quad { o_iri { name_id: 42 } } } rows { quad { o_iri { name_id: 46 } } } rows { quad { o_iri { } } } rows { name { value: "contentSize" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#integer" } } rows { quad { p_iri { prefix_id: 15 name_id: 58 } o_literal { lex: "1818485" datatype: 1 } } } rows { name { value: "contentUrl" } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/ros/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/crate/download/" } } } rows { name { value: "contributor" } } rows { prefix { value: "mailto:https://github.com/" } } rows { name { value: "acocac" } } rows { quad { p_iri { } o_iri { prefix_id: 12 } } } rows { name { value: "copyrightHolder" } } rows { prefix { } } rows { name { value: "mailto:environmental.ds.book@gmail.com" } } rows { quad { p_iri { prefix_id: 15 } o_iri { prefix_id: 13 } } } rows { name { value: "creator" } } rows { quad { p_iri { prefix_id: 15 } } } rows { name { value: "dateCreated" } } rows { quad { p_iri { } o_literal { lex: "2022-01-28 16:07:18.008253+00:00" } } } rows { name { value: "dateModified" } } rows { quad { p_iri { } o_literal { lex: "2024-03-05 12:17:35.087630+00:00" } } } rows { name { value: "datePublished" } } rows { quad { p_iri { } o_literal { lex: "2022-01-28 16:07:18.008253+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book." } } } rows { name { value: "encodingFormat" } } rows { quad { p_iri { name_id: 68 } o_literal { lex: "application/ld+json" } } } rows { name { value: "hasPart" } } rows { prefix { id: 1 value: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/folders/" } } rows { name { value: "15feba21-372c-46d6-b0b0-19e0aaea6804" } } rows { quad { p_iri { } o_iri { prefix_id: 1 } } } rows { name { value: "a3951320-07a9-4c0f-ad92-2f9968c3d5d6" } } rows { quad { o_iri { } } } rows { name { value: "b68a9b7a-911b-408e-8589-9b390cc2b9c6" } } rows { quad { o_iri { } } } rows { name { value: "ccf84951-cb66-430a-8f49-d9107c8611ca" } } rows { quad { o_iri { } } } rows { prefix { id: 3 value: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/resources/" } } rows { name { value: "8c66557a-510d-43ca-aab9-deb3a05b805c" } } rows { quad { o_iri { prefix_id: 3 } } } rows { quad { p_iri { prefix_id: 15 name_id: 39 } o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e" } } } rows { name { value: "keywords" } } rows { quad { p_iri { name_id: 75 } o_literal { lex: "Environmental Science" } } } rows { name { value: "license" } } rows { prefix { id: 2 value: "https://choosealicense.com/no-permission/" } } rows { quad { p_iri { } o_iri { prefix_id: 2 name_id: 2 } } } rows { name { value: "mainEntity" } } rows { quad { p_iri { prefix_id: 15 name_id: 77 } o_literal { lex: "Jupyter Notebook" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" } } } rows { quad { o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book" } } } rows { name { value: "publisher" } } rows { quad { p_iri { name_id: 78 } o_iri { prefix_id: 13 name_id: 63 } } } rows { prefix { id: 16 value: "http://w3id.org/ro-id/rohub/model#" } } rows { name { value: "community" } } rows { name { value: "379a4687-de50-44c7-b7bd-37125ebd4ff7" } } rows { quad { p_iri { prefix_id: 16 name_id: 79 } o_iri { prefix_id: 8 } } } rows { name { value: "creation_mode" } } rows { quad { p_iri { prefix_id: 16 } o_literal { lex: "MANUAL" } } } rows { prefix { id: 4 value: "http://www.opengis.net/ont/geosparql#" } } rows { name { value: "hasGeometry" } } rows { quad { p_iri { prefix_id: 4 } o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/0edc91a9-9049-4357-bad7-677880c8fd8a" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/19f9ef3f-8678-48f5-a9ac-cf364939dcda" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/4b55fad1-092b-4657-a004-aafc05499e18" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/e2eba045-3c2c-44a1-aa39-06cc232d05f9" } } } rows { prefix { id: 7 value: "http://purl.org/wf4ever/ro#" } } rows { name { value: "ResearchObject" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 83 } } } rows { name { value: "SnapshotRO" } } rows { quad { o_iri { prefix_id: 10 } } } rows { name { value: "Dataset" } } rows { quad { o_iri { prefix_id: 15 } } } rows { prefix { id: 9 value: "http://w3id.org/ro/" } } rows { name { value: "earth-scienceExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 9 } } } rows { prefix { id: 14 value: "https://w3id.org/ro/terms/earth-science#" } } rows { name { value: "ExecutableResearchObject" } } rows { quad { o_iri { prefix_id: 14 } } } rows { prefix { id: 11 value: "https://w3id.org/contentdesc#" } } rows { name { value: "Domain" } } rows { quad { p_iri { prefix_id: 11 } o_literal { lex: "https://w3id.org/ro-id/4e7f08b1-a7d0-4112-a463-d0c45b4770e4" } } } rows { quad { p_iri { prefix_id: 14 name_id: 26 } o_literal { lex: "https://w3id.org/ro-id/152415ea-1d9a-41f9-9984-c673b40c9768" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/221f0e07-34c9-4290-a4ea-5f0d65495ec4" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/695dd599-8887-4125-881d-733a40814c52" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/6c71b727-5323-4a4a-be22-860d8acbc45f" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/8ad55fac-d1ee-4f7c-840b-b2bd4a724c10" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/9b64005e-2a10-4252-b6ac-5a432b0d3277" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/bbebb776-ec07-431e-99c6-37c5393397db" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/f03c2acc-c554-4f4b-9df6-bd410b93a5a2" } } } rows { name { value: "FieldOfResearch" } } rows { quad { p_iri { name_id: 89 } o_literal { lex: "https://w3id.org/ro-id/98c9727a-f092-4128-ac71-317f644c8182" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/d73964e2-62b9-4d8d-b8a9-3094f11d67bf" } } } rows { quad { p_iri { name_id: 19 } o_literal { lex: "https://w3id.org/ro-id/0e3d9282-04db-4463-8fb3-591727faf80d" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/6f740a48-5734-4483-99c0-29afd555ea6a" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/ac52fad5-b60d-494f-b00c-37b81641f4b8" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/fde959e7-40ae-4830-a910-ae970edc2f29" } } } rows { quad { p_iri { name_id: 22 } o_literal { lex: "https://w3id.org/ro-id/131ecbc9-9305-4c2b-b3ca-d71f975cfb0f" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/2190b4f5-d076-45b5-aa45-05078c46dc37" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/472d3856-c194-4465-b588-f0732c7aae8a" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/68836489-c10c-4e56-aa25-8fe25262195b" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/6a23432b-fc26-417b-8b67-904b39cc8ac1" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/90b8a634-528f-4e07-bb16-62e6202c2bad" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/d966a869-46b0-45ca-b474-20d617629f8f" } } } rows { name { value: "NASA" } } rows { quad { p_iri { name_id: 90 } o_literal { lex: "https://w3id.org/ro-id/e5a3a5b9-046b-4bf6-ac45-bd242cbccc7e" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/edf48a39-b691-48a6-8a15-16e617128d24" } } } rows { quad { p_iri { name_id: 30 } o_literal { lex: "https://w3id.org/ro-id/26829b0f-b79f-4176-a622-2830ef8917c7" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/6ce2bad3-a951-4bdc-8b78-1136029eeaa1" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/9c44801a-7cf6-4714-b877-6b48e3d1ef14" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/a4f5de84-2385-46e1-9061-a903cd4f13ad" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/cc8ce773-a8f0-4e7a-be85-12594199ca6a" } } } rows { quad { p_iri { name_id: 32 } o_literal { lex: "https://w3id.org/ro-id/2b4ddd34-5497-459a-87ad-dfc7dbcc4754" } } } rows { quad { o_literal { lex: "https://w3id.org/ro-id/dc40a687-4d4c-4c9a-b49d-c3c8e37d336c" } } } rows { prefix { id: 5 value: "https://www.w3.org/ns/iana/link-relations/relation#" } } rows { name { value: "cite-as" } } rows { quad { p_iri { prefix_id: 5 name_id: 91 } o_literal { lex: "Raquel Carmo, Jamila Mifdal, and Alejandro Coca-Castro. \"Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book.\" ROHub. Jan 28 ,2022. https://doi.org/10.24424/g1bk-dv49." } } } rows { quad { s_iri { prefix_id: 8 name_id: 80 } p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 16 name_id: 79 } } } rows { name { value: "5e575874-cf75-43d0-98c2-4f134766f82a" } } rows { quad { s_iri { prefix_id: 1 name_id: 70 } p_iri { prefix_id: 15 name_id: 69 } o_iri { prefix_id: 3 name_id: 92 } } } rows { name { value: "cd7c935a-6f33-469f-ac20-dea94870c56c" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "biblio" } } } rows { prefix { id: 12 value: "http://purl.org/wf4ever/wf4ever#" } } rows { name { value: "Folder" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 94 } } } rows { quad { o_iri { prefix_id: 15 name_id: 85 } } } rows { name { value: "1949f298-bced-4855-9bcd-dc6f3e4fb044" } } rows { quad { s_iri { prefix_id: 1 name_id: 71 } p_iri { prefix_id: 15 name_id: 69 } o_iri { prefix_id: 3 name_id: 95 } } } rows { name { value: "27f954d7-2eb4-47a9-95f8-3b2fd20b0ce5" } } rows { quad { o_iri { } } } rows { name { value: "5d36ec63-909d-4725-87c5-9c8efa6f4c21" } } rows { quad { o_iri { } } } rows { name { value: "62c26466-4897-4342-800b-5cd6ebe9b0af" } } rows { quad { o_iri { } } } rows { name { value: "95633740-ef14-4f64-af39-ce314393ede8" } } rows { quad { o_iri { } } } rows { name { value: "a5cf0ac6-d136-4fd9-9be2-118503fef01e" } } rows { quad { o_iri { } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "tool" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 94 } } } rows { quad { o_iri { prefix_id: 15 name_id: 85 } } } rows { name { value: "e6b148e4-7249-4230-a4d1-67896fba7677" } } rows { quad { s_iri { prefix_id: 1 name_id: 72 } p_iri { prefix_id: 15 name_id: 69 } o_iri { prefix_id: 3 name_id: 101 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "input" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 94 } } } rows { quad { o_iri { prefix_id: 15 name_id: 85 } } } rows { name { value: "3c01e2db-446c-4ef4-9c8c-2be26c478cb7" } } rows { quad { s_iri { prefix_id: 1 name_id: 73 } p_iri { prefix_id: 15 name_id: 69 } o_iri { prefix_id: 3 name_id: 102 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "output" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 94 } } } rows { quad { o_iri { prefix_id: 15 name_id: 85 } } } rows { quad { s_iri { prefix_id: 3 name_id: 95 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/notebook.ipynb" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-28 16:07:32.857476+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:39.058397+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Jupyter notebook" } } } rows { name { value: "sdDatePublished" } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-28 16:07:32.857476+00:00" } } } rows { name { value: "Resource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { name { value: "MediaObject" } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "earth-scienceJupyterNotebook" } } rows { quad { o_iri { prefix_id: 9 } } } rows { prefix { id: 4 value: "https://schema.org/" } } rows { name { value: "softwareRequirements" } } rows { quad { p_iri { prefix_id: 4 } o_literal { lex: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/resources/83b2492d-b4bb-4f8c-acc9-775e288a971c" } } } rows { quad { s_iri { prefix_id: 3 name_id: 96 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-linux-64.lock" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-31 11:16:54.901085+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:39.778423+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for linux-64 OS of the Jupyter Book hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for linux-64" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-31 11:16:54.901085+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 102 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://doi.org/10.5281/zenodo.5911143" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-28 16:07:38.160206+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:43.879157+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains outputs, (predictions and interactive figure), generated in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Outputs" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-28 16:07:38.160206+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 85 } } } rows { quad { o_iri { name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 97 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/requirements.txt" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-31 11:27:45.283002+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:37.078794+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Pip requirements file containing libraries to install after conda lock" } } } rows { quad { p_iri { name_id: 68 } o_literal { lex: "text/plain" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Pip requirements for lock conda environments" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-31 11:27:45.283002+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 92 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-28 16:07:43.339740+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:38.898474+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Publication with further details of the modelling published in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Towards detecting floating objects on a global scale with learned spatial features using sentinel 2" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-28 16:07:43.339740+00:00" } } } rows { prefix { id: 7 value: "http://purl.org/dc/terms/" } } rows { name { value: "BibliographicResource" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 108 } } } rows { quad { o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 98 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://edsbook.org/notebooks/gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/notebook.html" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-31 11:16:52.095424+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:43.642918+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 68 } o_literal { lex: "text/html" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Online rendered version of the Jupyter notebook" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-31 11:16:52.095424+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "publication" } } rows { quad { o_iri { name_id: 109 } } } rows { quad { s_iri { prefix_id: 3 name_id: 74 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 58 } o_literal { lex: "1799691" datatype: 1 } } } rows { quad { p_iri { } o_literal { lex: "https://api.rohub.org/api/resources/8c66557a-510d-43ca-aab9-deb3a05b805c/download/" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2023-03-05 21:59:06.519381+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:38.219207+00:00" } } } rows { quad { p_iri { name_id: 68 } o_literal { lex: "image/png" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "sketch_680px.png" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2023-03-05 21:59:06.519381+00:00" } } } rows { prefix { id: 10 value: "http://purl.org/wf4ever/roterms#" } } rows { name { value: "Sketch" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 10 name_id: 110 } } } rows { quad { o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 99 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-osx-64.lock" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-31 11:16:56.332731+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:36.488124+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Lock conda file for osx-64 OS of the Jupyter Book hosted by the Environmental Data Science Book" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Lock conda file for osx-64" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-31 11:16:56.332731+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 100 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/.binder/environment.yml" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-31 11:32:03.379546+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:39.940401+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Conda environment when user want to have the same libraries installed without concerns of package versions" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Conda environment" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-31 11:32:03.379546+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 93 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://210507-004.oceansvirtual.com/view/content/skdwP611e3583eba2b/ecf65c2aaf278557ad05c213247d67a54196c9376a0aed8f1875681f182daeed" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-28 16:07:40.875698+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:43.758517+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Related publication of the modelling published in OCEANS 2021" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Detecting macro floating objects on coastal water bodies using sentinel-2 data" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-28 16:07:40.875698+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 7 name_id: 108 } } } rows { quad { o_iri { prefix_id: 12 name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { quad { s_iri { prefix_id: 3 name_id: 101 } p_iri { prefix_id: 15 name_id: 54 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 59 } o_literal { lex: "https://doi.org/10.5281/zenodo.5827376" } } } rows { quad { p_iri { name_id: 64 } o_iri { prefix_id: 13 name_id: 63 } } } rows { quad { p_iri { prefix_id: 15 name_id: 65 } o_literal { lex: "2022-01-28 16:07:34.662177+00:00" } } } rows { quad { p_iri { } o_literal { lex: "2023-03-20 16:26:36.244852+00:00" } } } rows { quad { p_iri { name_id: 13 } o_literal { lex: "Contains input analysis-ready input images used in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery" } } } rows { quad { p_iri { name_id: 76 } o_iri { prefix_id: 2 name_id: 2 } } } rows { quad { p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Input images" } } } rows { quad { p_iri { name_id: 103 } o_literal { lex: "2022-01-28 16:07:34.662177+00:00" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 12 name_id: 85 } } } rows { quad { o_iri { name_id: 104 } } } rows { quad { o_iri { prefix_id: 15 } } } rows { name { value: "ro-crate-metadata.json" } } rows { name { value: "conformsTo" } } rows { prefix { value: "https://w3id.org/ro/crate/" } } rows { name { value: "1.1" } } rows { quad { s_iri { prefix_id: 8 name_id: 111 } p_iri { prefix_id: 7 } o_iri { prefix_id: 11 } } } rows { quad { p_iri { prefix_id: 15 name_id: 53 } o_iri { prefix_id: 8 name_id: 2 } } } rows { name { value: "CreativeWork" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 114 } } } rows { prefix { id: 14 value: "https://w3id.org/ro-id/" } } rows { name { value: "472d3856-c194-4465-b588-f0732c7aae8a" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Sentinel-2" } } } rows { prefix { id: 5 value: "https://w3id.org/ro/terms/earth-science#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "17.521902377972463" } } } rows { quad { p_iri { } o_literal { lex: "14.0" } } } rows { name { value: "4e7f08b1-a7d0-4112-a463-d0c45b4770e4" } } rows { quad { s_iri { prefix_id: 14 name_id: 116 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "publishing" } } } rows { prefix { id: 16 value: "https://w3id.org/contentdesc#" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 16 name_id: 88 } } } rows { quad { p_iri { prefix_id: 5 name_id: 23 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "4.8" } } } rows { name { value: "68836489-c10c-4e56-aa25-8fe25262195b" } } rows { quad { s_iri { prefix_id: 14 name_id: 117 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "12.891113892365455" } } } rows { quad { p_iri { } o_literal { lex: "10.3" } } } rows { name { value: "695dd599-8887-4125-881d-733a40814c52" } } rows { quad { s_iri { prefix_id: 14 name_id: 118 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "detection" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "15.395284327323164" } } } rows { quad { p_iri { } o_literal { lex: "11.1" } } } rows { name { value: "6a23432b-fc26-417b-8b67-904b39cc8ac1" } } rows { quad { s_iri { prefix_id: 14 name_id: 119 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "12.891113892365455" } } } rows { quad { p_iri { } o_literal { lex: "10.3" } } } rows { name { value: "6c71b727-5323-4a4a-be22-860d8acbc45f" } } rows { quad { s_iri { prefix_id: 14 name_id: 120 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "13.730929264909848" } } } rows { quad { p_iri { } o_literal { lex: "9.9" } } } rows { name { value: "6ce2bad3-a951-4bdc-8b78-1136029eeaa1" } } rows { quad { s_iri { prefix_id: 14 name_id: 121 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "deep learning" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 30 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "5.391658189216684" } } } rows { quad { p_iri { } o_literal { lex: "5.3" } } } rows { name { value: "6f740a48-5734-4483-99c0-29afd555ea6a" } } rows { quad { s_iri { prefix_id: 14 name_id: 122 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Language" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "Arts, culture and entertainment/Culture/Language" } } } rows { name { value: "8ad55fac-d1ee-4f7c-840b-b2bd4a724c10" } } rows { quad { s_iri { prefix_id: 14 name_id: 123 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "physical object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "11.511789181692096" } } } rows { quad { p_iri { } o_literal { lex: "8.3" } } } rows { name { value: "90b8a634-528f-4e07-bb16-62e6202c2bad" } } rows { quad { s_iri { prefix_id: 14 name_id: 124 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "11.76470588235294" } } } rows { quad { p_iri { } o_literal { lex: "9.4" } } } rows { name { value: "98c9727a-f092-4128-ac71-317f644c8182" } } rows { quad { s_iri { prefix_id: 14 name_id: 125 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "earth sciences" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 89 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5625630021095276" } } } rows { name { value: "9b64005e-2a10-4252-b6ac-5a432b0d3277" } } rows { quad { s_iri { prefix_id: 14 name_id: 126 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "learning" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "10.540915395284328" } } } rows { quad { p_iri { } o_literal { lex: "7.6" } } } rows { name { value: "9c44801a-7cf6-4714-b877-6b48e3d1ef14" } } rows { quad { s_iri { prefix_id: 14 name_id: 127 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 30 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "34.28280773143439" } } } rows { quad { p_iri { } o_literal { lex: "33.7" } } } rows { name { value: "a4f5de84-2385-46e1-9061-a903cd4f13ad" } } rows { quad { s_iri { prefix_id: 14 name_id: 128 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "refer to the detecting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 30 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "1.7293997965412005" } } } rows { quad { p_iri { } o_literal { lex: "1.7" } } } rows { name { id: 1 value: "ac52fad5-b60d-494f-b00c-37b81641f4b8" } } rows { quad { s_iri { prefix_id: 14 name_id: 1 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Literature" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "Arts, culture and entertainment/Arts and entertainment/Literature" } } } rows { prefix { id: 1 value: "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a/" } } rows { name { id: 3 value: "0edc91a9-9049-4357-bad7-677880c8fd8a" } } rows { prefix { id: 9 value: "http://www.opengis.net/ont/geosparql#" } } rows { name { id: 5 value: "asWKT" } } rows { quad { s_iri { prefix_id: 1 name_id: 3 } p_iri { prefix_id: 9 name_id: 5 } o_literal { lex: "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))" } } } rows { name { value: "Geometry" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 6 } } } rows { prefix { id: 4 value: "http://www.opengis.net/ont/sf#" } } rows { name { value: "Polygon" } } rows { quad { o_iri { prefix_id: 4 } } } rows { name { value: "19f9ef3f-8678-48f5-a9ac-cf364939dcda" } } rows { quad { s_iri { prefix_id: 1 } p_iri { prefix_id: 9 name_id: 5 } o_literal { lex: "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 6 } } } rows { quad { o_iri { prefix_id: 4 } } } rows { name { value: "4b55fad1-092b-4657-a004-aafc05499e18" } } rows { quad { s_iri { prefix_id: 1 name_id: 9 } p_iri { prefix_id: 9 name_id: 5 } o_literal { lex: "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 6 } } } rows { quad { o_iri { prefix_id: 4 } } } rows { name { id: 11 value: "e2eba045-3c2c-44a1-aa39-06cc232d05f9" } } rows { quad { s_iri { prefix_id: 1 name_id: 11 } p_iri { prefix_id: 9 name_id: 5 } o_literal { lex: "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 6 } } } rows { quad { o_iri { prefix_id: 4 } } } rows { name { id: 4 value: "b34facfa-cea8-48f5-89f6-f11ce00812a9" } } rows { prefix { id: 10 value: "http://purl.org/wf4ever/ro#" } } rows { quad { s_iri { prefix_id: 14 name_id: 4 } o_iri { prefix_id: 10 name_id: 83 } } } rows { name { id: 15 value: "bbebb776-ec07-431e-99c6-37c5393397db" } } rows { quad { s_iri { prefix_id: 14 name_id: 15 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "research" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "12.621359223300972" } } } rows { quad { p_iri { } o_literal { lex: "9.1" } } } rows { name { id: 18 value: "cc8ce773-a8f0-4e7a-be85-12594199ca6a" } } rows { quad { s_iri { prefix_id: 14 name_id: 18 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "imagery notebook" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 30 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "43.336724313326556" } } } rows { quad { p_iri { } o_literal { lex: "42.6" } } } rows { name { id: 21 value: "d73964e2-62b9-4d8d-b8a9-3094f11d67bf" } } rows { quad { s_iri { prefix_id: 14 name_id: 21 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "geology" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 89 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5625630021095276" } } } rows { name { id: 25 value: "d966a869-46b0-45ca-b474-20d617629f8f" } } rows { quad { s_iri { prefix_id: 14 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "detecting" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 22 } } } rows { quad { p_iri { } o_literal { lex: "15.269086357947433" } } } rows { quad { p_iri { } o_literal { lex: "12.2" } } } rows { name { id: 27 value: "dc40a687-4d4c-4c9a-b49d-c3c8e37d336c" } } rows { quad { s_iri { prefix_id: 14 name_id: 27 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book." } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 32 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "56.45645645645645" } } } rows { quad { p_iri { } o_literal { lex: "56.4" } } } rows { name { value: "e5a3a5b9-046b-4bf6-ac45-bd242cbccc7e" } } rows { quad { s_iri { prefix_id: 14 name_id: 28 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "communications and radar" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 90 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5148147940635681" } } } rows { name { value: "edf48a39-b691-48a6-8a15-16e617128d24" } } rows { quad { s_iri { prefix_id: 14 name_id: 29 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "engineering" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 90 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "100.0" } } } rows { quad { p_iri { } o_literal { lex: "0.5148147940635681" } } } rows { name { id: 31 value: "f03c2acc-c554-4f4b-9df6-bd410b93a5a2" } } rows { quad { s_iri { prefix_id: 14 name_id: 31 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "object" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 26 } } } rows { quad { p_iri { name_id: 23 } o_literal { lex: "9.431345353675452" } } } rows { quad { p_iri { } o_literal { lex: "6.8" } } } rows { name { id: 33 value: "fde959e7-40ae-4830-a910-ae970edc2f29" } } rows { quad { s_iri { prefix_id: 14 name_id: 33 } p_iri { prefix_id: 15 name_id: 14 } o_literal { lex: "Education" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 5 name_id: 19 } } } rows { quad { p_iri { } o_literal { lex: "Education" } } } rows { name { id: 44 value: "email" } } rows { quad { s_iri { prefix_id: 13 name_id: 63 } p_iri { prefix_id: 15 name_id: 44 } o_literal { lex: "environmental.ds.book@gmail.com" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Environmental Data Science Book Community" } } } rows { name { value: "Person" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 15 name_id: 45 } } } rows { prefix { id: 3 value: "http://xmlns.com/foaf/0.1/" } } rows { name { id: 43 value: "Agent" } } rows { quad { o_iri { prefix_id: 3 name_id: 43 } } } rows { prefix { id: 2 value: "mailto:https://github.com/" } } rows { name { id: 34 value: "affiliation" } } rows { quad { s_iri { prefix_id: 2 name_id: 61 } p_iri { prefix_id: 15 name_id: 34 } o_literal { lex: "The Alan Turing Institute" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Alejandro Coca-Castro" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 43 } } } rows { prefix { id: 12 value: "mailto:https://orcid.org/" } } rows { quad { s_iri { prefix_id: 12 name_id: 55 } p_iri { prefix_id: 15 name_id: 34 } o_literal { lex: "European Space Agency \316\246-lab" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Jamila Mifdal" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 43 } } } rows { quad { s_iri { prefix_id: 12 name_id: 56 } p_iri { prefix_id: 15 name_id: 34 } o_literal { lex: "European Space Agency \316\246-lab" } } } rows { quad { p_iri { name_id: 14 } o_literal { lex: "Raquel Carmo" } } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 3 name_id: 43 } } } rows { prefix { id: 7 value: "https://w3id.org/np/RA_d7DDPSEvJHrBwlwoYNhvsYYPLJDv59hv36tJMHew2A/" } } rows { name { value: "assertion" } } rows { prefix { id: 11 value: "http://www.w3.org/ns/prov#" } } rows { name { value: "wasDerivedFrom" } } rows { prefix { id: 8 value: "https://api.rohub.org/api/ros/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/crate/download/" } } rows { name { id: 38 value: "provenance" } } rows { quad { s_iri { prefix_id: 7 name_id: 35 } p_iri { prefix_id: 11 } o_iri { prefix_id: 8 name_id: 111 } g_iri { prefix_id: 7 name_id: 38 } } } rows { prefix { id: 16 value: "https://w3id.org/np/" } } rows { name { id: 41 value: "RA_d7DDPSEvJHrBwlwoYNhvsYYPLJDv59hv36tJMHew2A" } } rows { prefix { id: 1 value: "http://purl.org/dc/terms/" } } rows { name { id: 40 value: "created" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#dateTime" } } rows { name { id: 48 value: "pubinfo" } } rows { quad { s_iri { prefix_id: 16 name_id: 41 } p_iri { prefix_id: 1 name_id: 40 } o_literal { lex: "2025-11-11T16:12:35.746+01:00" datatype: 2 } g_iri { prefix_id: 7 name_id: 48 } } } rows { prefix { id: 9 value: "http://purl.org/nanopub/x/" } } rows { name { value: "introduces" } } rows { prefix { id: 4 value: "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/" } } rows { quad { p_iri { prefix_id: 9 } o_iri { prefix_id: 4 name_id: 2 } } } rows { name { value: "RoCrateNanopub" } } rows { quad { p_iri { prefix_id: 6 name_id: 10 } o_iri { prefix_id: 9 name_id: 50 } } } rows { prefix { id: 10 value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { name { value: "label" } } rows { quad { p_iri { prefix_id: 10 } o_literal { lex: "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" } } } rows { name { value: "sig" } } rows { name { id: 12 value: "hasAlgorithm" } } rows { quad { s_iri { prefix_id: 7 } p_iri { prefix_id: 9 name_id: 12 } o_literal { lex: "RSA" } } } rows { name { id: 16 value: "hasPublicKey" } } rows { quad { p_iri { name_id: 16 } o_literal { lex: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB" } } } rows { name { value: "hasSignature" } } rows { quad { p_iri { } o_literal { lex: "EPj5aiEASKnjyms5hXAx6LkBSxLAgdFV6xBWsxDlXERYopijB6b/51gkLxbfCK3M+tQeIEK6fQP7tQK8whOYcSoz5prSFzJ+Yf0L3FPXT+/94Hc+GYXGbPdCbeUvp222A3HoJI6ZVWRPiq4MdcEiW8gGRrUimTBfpH1JlrKboUElA8xX3BtMbUf/2Tl0Ywa/VquKKQyxlt4Y4PXh6H1zVE1OK/8dfHPjbn5+6U+orLa5+vanTftthfkz8dosAz47y/nkN7VEMIDWaokJUwMQrnu/7OnuF/nGJQWLKXjKJ0bBq/37IpHoxjMrnMISiQLouJSQg4ZWLVfSvDbQt/MW1g==" } } } rows { name { id: 57 value: "hasSignatureTarget" } } rows { quad { p_iri { name_id: 57 } o_iri { prefix_id: 16 name_id: 41 } } } rows { name { id: 37 value: "signedBy" } } rows { prefix { id: 14 value: "https://w3id.org/kpxl/gen/terms/" } } rows { name { id: 42 value: "RoCrateBot" } } rows { quad { p_iri { prefix_id: 9 name_id: 37 } o_iri { prefix_id: 14 name_id: 42 } } }