Nanopublication

< Home

ID

https://w3id.org/np/RAaLXL-snBC1-5ideqKxbk9In0I-C2QwFh52x9pnfxX_s

Formats

.trig | .trig.txt | .jelly | .jelly.txt | .jsonld | .jsonld.txt | .nq | .nq.txt | .xml | .xml.txt

Content

@prefix this: <https://w3id.org/np/RAaLXL-snBC1-5ideqKxbk9In0I-C2QwFh52x9pnfxX_s> .
@prefix sub: <https://w3id.org/np/RAaLXL-snBC1-5ideqKxbk9In0I-C2QwFh52x9pnfxX_s/> .
@prefix np: <http://www.nanopub.org/nschema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix nt: <https://w3id.org/np/o/ntemplate/> .
@prefix npx: <http://purl.org/nanopub/x/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix orcid: <https://orcid.org/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

sub:Head {
  this: a np:Nanopublication;
    np:hasAssertion sub:assertion;
    np:hasProvenance sub:provenance;
    np:hasPublicationInfo sub:pubinfo .
}

sub:assertion {
  <https://ieeexplore.ieee.org/document/10947128> a <https://w3id.org/fair/ff/terms/article>,
      <https://w3id.org/fdof/ontology#FAIRDigitalObject>;
    dct:creator orcid:0000-0001-5740-8179, orcid:0000-0002-4135-7634;
    dct:language <https://www.omg.org/spec/LCC/Languages/LaISO639-1-LanguageCodes/en>;
    dct:publisher <https://ror.org/0078xmk34>;
    dct:subject <http://aims.fao.org/aos/agrovoc/c_6498>;
    rdfs:comment """Abstract:
In remote sensing image processing for Earth and environmental applications, super-resolution (SR) is a crucial technique for enhancing the resolution of low-resolution (LR) images. In this study, we proposed a novel algorithm of frequency-domain super-resolution with reconstruction from compressed representation. The algorithm follows a multistep procedure: first, an LR image in the space domain is transformed to the frequency domain using a Fourier transform. The frequency-domain representation is then expanded to the desired size (number of pixels) of a high-resolution (HR) image. This expanded frequency-domain image is subsequently inverse Fourier transformed back to the spatial domain, yielding an initial HR image. A final HR image is then reconstructed from the initial HR image using a low-rank regularization model that incorporates a nonlocal smoothed rank function (SRF). We evaluated the performance of the new algorithm by comparing the reconstructed HR images with those generated by several commonly used SR algorithms, including: 1) bicubic interpolation; 2) sparse representation; 3) adaptive sparse domain selection and adaptive regularization; 4) fuzzy-rule-based (FRB) algorithm; 5) SR convolutional neural networks (SRCNNs); 6) fast SR convolutional neural networks (FSRCNNs); 7) practical degradation model for deep blind image SR; 8) the frequency separation for real-world SR (FSSR); and 9) the enhanced SR generative adversarial networks (ESRGANs). The algorithms were tested on Landsat-8 and Moderate Resolution Imaging Spectroradiometer (MODIS) multiresolution images over various locations, as well as on images with artificially added noise to assess the robustness of each algorithm. Results show that: 1) the proposed new algorithm outperforms the others in terms of the peak signal-to-noise ratio, structure similarity, and root-mean-square error and 2) it effectively suppresses noise during HR reconstruction from noisy low-resolution (LR) images, overcoming a key limitation of existing SR methods.""";
    <https://schema.org/funder> <https://ror.org/0078xmk34>;
    <https://w3id.org/fdof/ontology#hasMetadata> this:;
    <https://www.w3.org/ns/dcat#contactPoint> "xzhou@mtech.edu";
    <https://www.w3.org/ns/dcat#endDate> "2024-04-01";
    <https://www.w3.org/ns/dcat#startDate> "2023-08-01" .
}

sub:provenance {
  sub:assertion prov:wasAttributedTo orcid:0009-0008-8411-2742 .
}

sub:pubinfo {
  orcid:0009-0008-8411-2742 foaf:name "Emily Regalado" .
  
  this: dct:created "2026-01-14T04:10:25.380Z"^^xsd:dateTime;
    dct:creator orcid:0009-0008-8411-2742;
    dct:license <https://creativecommons.org/licenses/by/4.0/>;
    npx:introduces <https://ieeexplore.ieee.org/document/10947128>;
    npx:wasCreatedAt <https://nanodash.knowledgepixels.com/>;
    nt:wasCreatedFromProvenanceTemplate <https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU>;
    nt:wasCreatedFromPubinfoTemplate <https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw>,
      <https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI>;
    nt:wasCreatedFromTemplate <https://w3id.org/np/RArM5GTwgxg9qslGX-XiQ-KTTUwdoM0KB1YqmT4GqTizA> .
  
  sub:sig npx:hasAlgorithm "RSA";
    npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxzr6UBGMW6c8tegz0babaledWUEQ0PLDE4tp7Iinbe2DZtAtY5JUptKYuStWDZx+QER4808P8dejNWRnBDzgthYJm/AyNSXflHSJhz2+NC+h7RylOLxbwLEQocmyKKiYxa2gT85m6ajVL2M6TnfG67nnK+K2f7iCGL6wYXRITD1q+7+5SWqBdDXIV921W4IKWaD2GJk+NRBoOqQhbsrk8Tn5XsNd7DMYVHk47oMDGbeBnrOIoRPsbBgAcoCsxxhiB9yN6Lf8EUbnlXVEDzJuZk048L1BDZL+6nkA8btTQGP2ijUFWA7rTrod3LjUDQWLZS95njjl867dtmv/znYkzwIDAQAB";
    npx:hasSignature "eID7cTiQBhL+dn5cWs7I5nhXf2OGjnjYGj6VvY4GweTlR/mrpSWXxti6soDLEv7Zpr6d4mquroF4nGG3XqECKniC9X7R/WIqKlavvORJ8jaF8SvKeZ2lHSG/3nX8q3kV1jhi3ZsuydsaVYwOQOX0XecnJsT1LxTTO8yU3HPpVnMZwfsAS6kRG3Ae+FczNOQwyrjws3bZX/+EjBCDKdsPOyCEfiL/seEKzldUF/U5Hc2buJx3vwX8whbsGS27J3b/W0YaWQF81DD5iyWCtHplw+Oqj+bI66FmXdtMlubJOTQgOKGDndKEEMezqAbDdvPquUZ/YR2OKFYzaJyxQRt3hA==";
    npx:hasSignatureTarget this:;
    npx:signedBy orcid:0009-0008-8411-2742 .
}