rows { options { physical_type: PHYSICAL_STREAM_TYPE_QUADS max_name_table_size: 128 max_prefix_table_size: 16 max_datatype_table_size: 16 logical_type: LOGICAL_STREAM_TYPE_DATASETS version: 2 } } rows { prefix { value: "http://purl.org/dc/terms/" } } rows { name { } } rows { namespace { name: "dcterms" value { prefix_id: 1 } } } rows { prefix { value: "http://xmlns.com/foaf/0.1/" } } rows { namespace { name: "foaf" value { prefix_id: 2 name_id: 1 } } } rows { prefix { value: "http://www.nanopub.org/nschema#" } } rows { namespace { name: "np" value { prefix_id: 3 name_id: 1 } } } rows { prefix { value: "http://purl.org/nanopub/x/" } } rows { namespace { name: "npx" value { prefix_id: 4 name_id: 1 } } } rows { prefix { value: "https://w3id.org/np/o/ntemplate/" } } rows { namespace { name: "nt" value { prefix_id: 5 name_id: 1 } } } rows { prefix { value: "https://orcid.org/" } } rows { namespace { name: "orcid" value { prefix_id: 6 name_id: 1 } } } rows { prefix { value: "http://data.cochrane.org/ontologies/pico/" } } rows { namespace { name: "pico" value { prefix_id: 7 name_id: 1 } } } rows { prefix { value: "http://www.w3.org/ns/prov#" } } rows { namespace { name: "prov" value { prefix_id: 8 name_id: 1 } } } rows { prefix { value: "http://www.w3.org/2000/01/rdf-schema#" } } rows { namespace { name: "rdfs" value { prefix_id: 9 name_id: 1 } } } rows { prefix { value: "https://w3id.org/sciencelive/o/terms/" } } rows { namespace { name: "sciencelive" value { prefix_id: 10 name_id: 1 } } } rows { prefix { value: "https://w3id.org/np/RAjO8tdVOla9I77PeXF4iY92ULngrpx5_ZSKFkVrCmsW0/" } } rows { namespace { name: "sub1" value { prefix_id: 11 name_id: 1 } } } rows { prefix { value: "https://w3id.org/np/" } } rows { name { value: "RAjO8tdVOla9I77PeXF4iY92ULngrpx5_ZSKFkVrCmsW0" } } rows { namespace { name: "this" value { prefix_id: 12 } } } rows { prefix { value: "http://www.w3.org/2001/XMLSchema#" } } rows { namespace { name: "xsd" value { prefix_id: 13 name_id: 1 } } } rows { name { value: "hasAssertion" } } rows { name { value: "assertion" } } rows { name { value: "Head" } } rows { quad { s_iri { prefix_id: 12 } p_iri { prefix_id: 3 } o_iri { prefix_id: 11 } g_iri { } } } rows { name { value: "hasProvenance" } } rows { name { value: "provenance" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 11 } } } rows { name { value: "hasPublicationInfo" } } rows { name { value: "pubinfo" } } rows { quad { p_iri { prefix_id: 3 } o_iri { prefix_id: 11 } } } rows { prefix { value: "http://www.w3.org/1999/02/22-rdf-syntax-ns#" } } rows { name { value: "type" } } rows { name { value: "Nanopublication" } } rows { quad { p_iri { prefix_id: 14 } o_iri { prefix_id: 3 } } } rows { name { value: "comparatorGroup" } } rows { name { value: "description" } } rows { quad { s_iri { prefix_id: 11 } p_iri { prefix_id: 1 } o_literal { lex: "Different ML/DL architectures compared against each other; comparison of input data configurations (spectral bands, indices, temporal features); validation approaches (cross-validation, independent test sets, spatial holdout); and where available, comparison with traditional remote sensing methods (thresholding, spectral indices)" } g_iri { prefix_id: 11 name_id: 4 } } } rows { name { value: "interventionGroup" } } rows { quad { s_iri { name_id: 14 } o_literal { lex: "Machine learning and deep learning algorithms applied to Sentinel-2 multispectral imagery for wildfire applications, including convolutional neural networks (CNN, U-Net, ResNet, EfficientNet), random forest, support vector machines, gradient boosting methods, and attention-based architectures. Includes both uni-temporal and bi-temporal approaches, as well as fusion with Sentinel-1 SAR data" } } } rows { name { value: "machine-learning-algorithms-for-wildfire-detection" } } rows { quad { s_iri { } p_iri { prefix_id: 7 name_id: 12 } o_iri { prefix_id: 11 name_id: 12 } } } rows { quad { p_iri { prefix_id: 7 name_id: 14 } o_iri { prefix_id: 11 name_id: 14 } } } rows { name { value: "outcomeGroup" } } rows { quad { p_iri { prefix_id: 7 name_id: 16 } o_iri { prefix_id: 11 name_id: 16 } } } rows { name { value: "population" } } rows { quad { p_iri { prefix_id: 7 } o_iri { prefix_id: 11 name_id: 17 } } } rows { quad { p_iri { prefix_id: 1 name_id: 13 } o_literal { lex: "What machine learning algorithms have been developed and validated for wildfire detection, risk prediction, and burned area mapping using Sentinel-2 imagery, and what are their reported performance metrics, geographic coverage, and application readiness?" } } } rows { name { value: "PICO" } } rows { quad { p_iri { prefix_id: 14 name_id: 10 } o_iri { prefix_id: 7 name_id: 18 } } } rows { name { value: "DescriptiveResearchQuestion" } } rows { quad { o_iri { prefix_id: 10 } } } rows { name { value: "label" } } rows { quad { p_iri { prefix_id: 9 } o_literal { lex: "Machine Learning Algorithms for Wildfire Detection and Burned Area Mapping Using Sentinel-2 Imagery: A Systematic Review" } } } rows { quad { s_iri { prefix_id: 11 name_id: 16 } p_iri { prefix_id: 1 name_id: 13 } o_literal { lex: "Algorithm performance metrics (accuracy, precision, recall, F1-score, IoU, overall accuracy, kappa coefficient), geographic transferability, computational requirements, input data requirements, code and model availability, and operational readiness for wildfire management applications" } } } rows { quad { s_iri { prefix_id: 11 name_id: 17 } o_literal { lex: "Geographic regions affected by wildfires globally, with focus on areas where Sentinel-2 multispectral imagery has been applied for wildfire-related studies, including Mediterranean Europe, California, Australia, Canada, and other fire-prone ecosystems" } } } rows { name { value: "wasAttributedTo" } } rows { name { value: "0000-0002-1784-2920" } } rows { quad { s_iri { name_id: 4 } p_iri { prefix_id: 8 name_id: 21 } o_iri { prefix_id: 6 } g_iri { prefix_id: 11 name_id: 7 } } } rows { name { value: "name" } } rows { quad { s_iri { prefix_id: 6 name_id: 22 } p_iri { prefix_id: 2 } o_literal { lex: "Anne Fouilloux" } g_iri { prefix_id: 11 name_id: 9 } } } rows { name { value: "created" } } rows { datatype { value: "http://www.w3.org/2001/XMLSchema#dateTime" } } rows { quad { s_iri { prefix_id: 12 name_id: 2 } p_iri { prefix_id: 1 name_id: 24 } o_literal { lex: "2026-01-06T10:11:08+00:00" datatype: 1 } } } rows { name { value: "creator" } } rows { quad { p_iri { } o_iri { prefix_id: 6 name_id: 22 } } } rows { name { value: "license" } } rows { prefix { value: "https://creativecommons.org/licenses/by/4.0/" } } rows { quad { p_iri { prefix_id: 1 name_id: 26 } o_iri { prefix_id: 15 name_id: 1 } } } rows { name { value: "introduces" } } rows { quad { p_iri { prefix_id: 4 name_id: 27 } o_iri { prefix_id: 11 name_id: 15 } } } rows { name { value: "wasCreatedAt" } } rows { prefix { value: "https://nanodash.knowledgepixels.com/" } } rows { quad { p_iri { prefix_id: 4 name_id: 28 } o_iri { prefix_id: 16 name_id: 1 } } } rows { quad { p_iri { prefix_id: 9 name_id: 20 } o_literal { lex: "PICO Research Question: Machine Learning Algorithms for Wildfire Detection and Burned Area Mappin..." } } } rows { name { value: "wasCreatedFromProvenanceTemplate" } } rows { name { value: "RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU" } } rows { quad { p_iri { prefix_id: 5 name_id: 29 } o_iri { prefix_id: 12 } } } rows { name { value: "wasCreatedFromPubinfoTemplate" } } rows { name { value: "RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw" } } rows { quad { p_iri { prefix_id: 5 } o_iri { prefix_id: 12 } } } rows { name { value: "RAoTD7udB2KtUuOuAe74tJi1t3VzK0DyWS7rYVAq1GRvw" } } rows { quad { o_iri { } } } rows { name { value: "RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI" } } rows { quad { o_iri { } } } rows { name { value: "wasCreatedFromTemplate" } } rows { name { value: "RA5e5XeXy_-aNK5giB7kBAEQslTLVydHeM4YYEzhmEE2w" } } rows { quad { p_iri { prefix_id: 5 } o_iri { prefix_id: 12 } } } rows { name { value: "sig" } } rows { name { value: "hasAlgorithm" } } rows { quad { s_iri { prefix_id: 11 } p_iri { prefix_id: 4 } o_literal { lex: "RSA" } } } rows { name { value: "hasPublicKey" } } rows { quad { p_iri { } o_literal { lex: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAosxbitQQzLXi1949Zd9JmSkGfYHHlj/CZZ7iiYs1TrZ5/Jk/wGA7kHEv7f9NtsinOdBo9EtHj/jgHE5W2Vv404JbOAY280PvH5Jns5ObWdVZmtHeCw0ZIdPEqNrurrEweKhzcTJW/YRpYWPwVPo47XyIW6IAcmx6gfdtmdPddMpplqExrP6G99ksXfXlZI0InQtZJRSGK5lYLLNzaofFtupPI5OAAGjooDyHijp0Ap2HIXH6WpO4S44cFPKU34pH2xhIY4/XT5DG1X5UoiVHs2Yoo30BHFudj/kAFwdzcy6Yh4tMDaB3ox6p7pi267d7n0y7kypC0Nt+hfgHQ1FpgwIDAQAB" } } } rows { name { value: "hasSignature" } } rows { quad { p_iri { } o_literal { lex: "KpV6CO4JE6MBySWTsHULx3ctMFogFcuRKb5/7ECwxqXmMzExpw7yiqwkT7QiJMUEXjXdtUNZUWtqbYC+tVvE69m0RibQyOqNauqY1YSLnN3I+0lh05ZObBHQGcWiedQgPFw2zf9eeVSWtVFRA51PNK0LE7Ed1x/bhVWprNTymwd3GmJ1n98hSTAJv5TujRtZEHPB8693rg/mCVirI7Zp60H+yG8AxwckKKXn0fwS0+cNbFpPE2IBzPnUEiuQy9Q74UQwqhAZ8tYG90kugEGDiJq6gZIIjO0eZlOXIZYGUliS9v3dgUO8HqPlk1+acWouH1oRk5tJ4urV75k7C/J56g==" } } } rows { name { value: "hasSignatureTarget" } } rows { quad { p_iri { } o_iri { prefix_id: 12 name_id: 2 } } } rows { name { value: "signedBy" } } rows { quad { p_iri { prefix_id: 4 name_id: 42 } o_iri { prefix_id: 6 name_id: 22 } } }